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Information quality and analyst forecast accuracy 

Abstract 

This paper presents a stochastic model of earnings to study and test how the precision of information that analysts have 

about the unobservable expected earnings growth rates of firms affects the accuracy of analyst earnings forecasts. The 

article develops a maximum likelihood procedure to estimate the precision of information that analysts have about 

expected earnings growth rates. Using the I/B/E/S and COMPUSTAT data sets, the authors find that earnings 

forecast accuracy is positively associated with information precision. This empirical finding helps explain why 

analyst earnings forecasts are more accurate than the forecasts that are based only on historical earnings data. It 

implies that investor may be better off relying on information precision rather than the size of a brokerage house to 

choose forecasting services. 

Keywords: information precision estimation, information precision, analyst earnings forecast accuracy, continuous-

time model and bayesian learning. 

JEL Classification: G12, G17, G14, C11. 
 

Introduction  

The accuracy of analyst earnings forecasts has been 

long an interesting topic to both financial econo-

mists and investors. There is a large body of litera-

ture studying how firm characteristics affect the 

accuracy of earnings forecasts (see, for example, 

Sinha, Brown and Das 1997, Brown and Rozeff 

1980; and Richards 1976). However, despite the 

extensive study of analyst forecast accuracy, little is 

known about how the precision of information that 

analysts have about the unobservable expected earn-

ings growth rates of firms affects the accuracy of 

analyst earnings forecasts. For example, if analysts 

have more precise information about unobservable 

future earnings growth rates, do earnings forecasts 

become more accurate? The answer helps us resolve 

one misconception in Wall Street: a large brokerage 

house or a big-name investor necessarily provides 

better forecasts than a small one. 

These issues have become more relevant in light of 

the recent financial crisis in the U.S. Although fi-

nancial analysts’ earnings forecasts are the key de-

terminant of stock prices, the effect of them on asset 

prices are murky at best. For example, several fi-

nancial analysts, including the famous George Soros 

and Meredith Whitney, warned unsustainable bub-

bles in housing markets back in 2004 and 2005. 

Apparently few investors heeded this message se-

riously until 2008. What was the reason that the 

market ignored these warning signs? One would 

postulate that these warnings were just like a typical 

noise that overwhelmed in the market, too noisy to 

be noted. The main issue is that people don’t have a 

ready tool to measure the informativeness of analyst 

research. The key to a credible signal is the preci-

sion of these warnings. 

                                                      
 George Li, Donglin Li, Ming Li, 2011. 

In this paper, we study and test how the precision of 

information that analysts have about the unobserva-

ble expected earnings growth rates of firms affects 

analyst forecast accuracy. We present a stochastic 

model of corporate earnings with a time-varying 

expected growth rate that is unobservable to ana-

lysts. To forecast future earnings, analysts have to 

use historical earnings data and the information they 

have about the unobservable expected earnings 

growth rate of a firm to estimate the value of the 

expected earnings growth rate. Thus, our model 

captures the notion that analysts use more than his-

torical earnings data to forecasts future earnings. 

We use biased earnings forecasts to construct un-

biased earnings forecasts, which are then used to 

estimate the precision of information. This approach 

is based on the idea that unbiased earnings forecasts 

are analysts’ expectations of future earnings condi-

tional on analysts’ information about unobservable 

expected earnings growth rates. Thus, by using un-

biased forecasts, we can extract analysts’ information 

about the expected earnings growth rates of firms. This 

approach is consistent with the practice in accounting 

and finance that unbiased earnings forecasts are 

widely used as analysts’ expectation of future earnings 

(see, for example, Brown, Foster and Noreen 1985, 

Hughes and Ricks 1987; McNichols 1989; Landsman 

and Maydew 2002; Frankel et al., 2006). 

We develop a maximum likelihood procedure to 

estimate information precision. Our estimation exer-

cise shows that the precision of information that 

analysts have about the expected earnings growth 

rates of firms varies from firm to firm. For some 

firms, analysts have relatively very precise informa-

tion; for some firms, the information that analysts have 

about future earnings growth is relatively noisy. 

We use data from I/B/E/S and COMPUSTAT to 

cross-sectionally analyze how analysts’ information 
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precision affects forecast accuracy. By controlling 

for firm characteristics such as earnings volatility, 

firm size and earnings level, we find that earnings 

forecast accuracy is positively associated with the 

precision of information that analysts have about the 

expected earnings growth rates of firms. This find-

ing indicates that when analysts have more precise 

information about expected earnings growth rates, 

their earnings forecasts are more accurate. This em-

pirical finding helps explain why analysts’ earnings 

forecasts are more accurate than the earnings fore-

casts based only on past realized earnings (see, for 

example, Brown, Foster and Noreen, 1985), and 

suggests that to forecast future earnings more accu-

rately, analysts may have to approach management, 

use better resources, or employ sharper skills to 

obtain more precise information about future earn-

ings growth rates. 

Our work is related to prior studies that use analyst 

forecasts to infer analysts’ information characteris-

tics. A partial list of works in this area includes Bar-

ry and Jennings (1992), Abarbanell, Lanen and Ver-

recchia (1995), Barron, Kim, Lim and Stevens 

(1998) and Landsman and Maydew (2002), Frankel 

et al. (2006). Despite similarity, our work differs 

from them in the following three aspects. First, this 

paper presents a stochastic model of corporate earn-

ings with an unobservable time-varying expected 

growth rate, which must be estimated by using both 

historical earnings data and the information that 

analysts have about the expected earnings growth 

rate. Second, the paper also develops a maximum 

likelihood procedure to estimate information preci-

sion. Finally, the paper documents the empirical 

evidence that a higher precision of information that 

analysts have about expected earnings growth rates 

increases earnings forecast accuracy. 

The rest of the paper is organized as follows. Sec-

tion 1 presents a stochastic model of corporate earn-

ings with an unobservable expected growth rate. 

Section 2 presents a maximum likelihood procedure 

to estimate the precision of information that analysts 

have about the expected earnings growth rates of 

firms. Section 3 discusses the data used in this 

study. The empirical results and their discussion are 

presented in section 4. Finally, in the last section, 

we make conclusions. 

1. The model 

In this section, we present a simple continuous-time 

model of corporate earnings to discuss how to esti-

mate the precision of information that analysts have 

about the expected earnings growth rate of a firm. 

While a similar discrete-time model may be used to 

achieve the same purpose, the continuous-time 

model here helps provide a much simpler solution 

procedure. 

Consider an earnings process, X(t), which evolves as 

follows: 

X XdX dt dW ,                                               (1)
 

where (t) is the expected earnings growth rate at 

time t and is unobservable, X is the volatility of the 

earnings and assumed to be a constant, and WX(t) is 

a standard Brownian motion. Moreover, the ex-

pected earnings growth rate (t) is time-varying and 

evolves as follows: 

( )d k dt dW ,                                     (2) 

where  is the volatility of the expected earnings 

growth rate and assumed to be a constant, k the mean-

reverting speed parameter, 

 

the long-run mean of 

the expected growth rate, and W (t) a standard 

Brownian motion, correlated with WX(t). In the rest 

of the paper, we let X X X  be the cova-

riance between the expected earnings growth rate 

and the earnings, where  is the correlation be-

tween W (t) and WX(t). 

The consideration of a mean-reverting expected 

earnings growth rate in equation (2) captures the 

notion that in the real world, the expected earnings 

growth rate of a firm is not a constant but time-

varying and related to business cycles (see Kandel 

and Stambaugh, 1990). Previous authors such as 

Wang (1993), Veronesi (2000) and Brennan and Xia 

(2001) also model the expected growth rate of divi-

dends as a mean-reverting process, similar to what 

we do here. 

While analysts cannot observe (t), they are as-
sumed to know the process and its parameters for 
the true expected earnings growth rate. This as-
sumption is a standard way of achieving analytical 
tractability in the literature of learning in the finan-
cial market (see, for example, Wang 1993, 1994; 
Brennan and Xia, 2001). In addition, analysts are 
assumed to obtain a noisy signal as follows: 

II dWdtdI ,                                             (3) 

where I is the volatility of this signal and assumed 

to be a constant, and WI(t) is a standard Brownian 

motion, which, for simplicity, is assumed to be in-

dependent of other Brownian motions. While a gen-

eral correlation structure among Brownian motions 

can be considered, it will yield similar results. 

The volatility ıI decides on the precision of infor-

mation that analysts have. When I is large, infor-

mation is relatively noisy; when I is small, informa-
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tion is relatively precise. At one extreme, when I = 

0, analysts have perfect information about expected 

earnings growth rates. At the other extreme, when 

I
, the signal conveys no information and 

analysts use just historical earnings data to learn 

about the expected earnings growth rate. 

The signal in equation (3) is the continuous time 

analog of the standard signal ( ) ( ) ( )II t t t  in a 

discrete time model, in which the signal equals 

fundamentals plus noise, with (t) a standard 

normal (see Veronesi (2000) for using the same 

way to model the noisy public signal in a conti-

nuous time model). 

Since analysts cannot observe the expected earn-

ings growth rate, to forecast future earnings, they 

have to estimate the value of (t) from informa-

tion I(t), and his observation of X(t). As shown in 

Liptser and Shiryayev (1978), the conditional 

distribution of (t) based on analysts’ information 

set { ( ), ( ), }tF X s I s s t  at time t is also normal, 

and the mean m(t) of this conditional distribution 

evolves according to the following diffusion 

process, which is derived in the Appendix. The 

result is summarized in the following lemma. 

Lemma 1. Let ( ) [ ( )| ]tmt E t F  be the estimate of 

the expected earnings growth rate. Then m(t) satis-

fies the following stochastic differential equation:  

1 2( ) I Xdm k m dt a dW a dW ,     .  .             (4) 

1
X

X

dW dX mdt , 

1
 I

I

dW dI mdt , 

where a1 and a2 are constants, defined in the Ap-

pendix. The innovation processes IW  and XW  

are standard Brownian motions with respect to 
, ( )X I

tF F t . In fact, the information structure 

generated by ( )WF t  is equivalent to that gener-

ated by 
, ( )X IF t , where [ , ]T

I XW W W . 

In equation (4), the estimate of the expected earn-
ings growth rate follows a mean-reverting two-
dimension process with a constant volatility. Two 

Brownian motions, IdW
 
and XdW , respectively, 

the normalized innovation processes of the signal 
and earnings realizations. These two stochastic 
components convey new information about surprises 

in signals and earnings. For example, when there is an 

unexpected high signal 0IdW , the analyst increases 

the expectation of (t). 

When the estimate of the expected earnings growth 

rate at time t is m(t), earnings evolve as follows: 

X XdX mdt dW .                                             (5) 

Also, equation (4) can be simplified as: 

( ) ( ) m mdm t k m dt dW  ,                             (6) 

where 
2 2 2

1 2m a a  and ( )mW t  is a standard Brow-

nian motion. In the following, we let mX  

XmmX  be the covariance between the esti-

mate of the expected earnings growth rate and the 

earnings growth rate, where mX  is the correlation 

between ( )mW t  and ( )XW t . 

2. Estimation of information precision 

In this section, we develop a maximum likelihood 
procedure to estimate the precision of information 
that analysts have about the expected earnings 
growth rate of a firm. We first examine how ana-
lysts use the estimate of the unobservable ex-
pected earnings growth rate at time, t, m(t), to 
forecast future earnings X(s), s > t. Let 

( ) ( ) | tUFS s E X s F , s > t, be the unbiased earn-

ings forecast at time t. Then the following lemma 
summarizes the relationship between the unbiased 
analyst forecast of future earnings X(s), UFS(s), s > t, 
and the estimate of the expected earnings growth 
rate, m(t). 

Lemma 2. Let ( ) ( ) | tUFS s E X s F  be the un-

biased forecast of earnings ( )X s , s t . Then, we have  

( )( ( ) )
( ) ( ) ( ) 1 s tm t

UFS s X t s t e

where  is the long-run mean of the expected 

earnings growth rate. 

Clearly, analysts use more than historical earnings 
data to forecast future earnings, since m(t) in 
UFS(s) is the estimation of the unobservable ex-
pected growth rate of earnings conditional on the 
analysts’ information set, which includes histori-
cal earnings data and information. 

To use discrete-time data of analyst earnings fore-
casts to estimate the precision of information, we 
first derive the discrete-time versions of equations 
(5) and (6) as follows: 

1 1( ) ( 1) ( 1) ( )XX t X t mt t ,                           (7) 
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2 2( ) ( 1) ( )mmt mt t
 
,                                         (8)

 

where 

1 2

1
1 , (1 )

k
ke

e , 

1 2

1
,

k
ke

e , 

( )

1 1
( ) ( ) (1 ) ( )

t t
k tm

X X X m
t t

t dW e dW ,

( )

1
( ) ( )

t
k t

m m m
t

t e dW . 

Since X(t) and m(t) both are functions of Brownian 

motion, they have a joint normal distribution. Then, 

using equations (7) and (8), we have the likelihood 

function as follows: 

1 2 12

1

( , , , , , ) ( , , )exp( ( ))
n

X X I

t

L k f Q t , (9) 

1
2

1 2 12 1 2 12( , , ) 2 1f , 

2

12

1
( ) ( )

2 1
Q t t , 

where 1 is the standard deviation of X(t) and 2 is 
the standard deviation of m(t) and 12 is their corre-
lation. We prove in Lemma 3 and Lemma 4 that 1, 

2 and 12 themselves depend on the original model 
parameters. And n is the number of observations in 
the data sample, 

2 2

12

1 1 2 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 2

X t X t X t X t m t m t m t m t
t , 

1 1( ) ( 1) ( 1)X t X t m t , 

and 2 2( ) ( 1)m t m t . 

Thus, if we have time-series data about X(t) and m(t) 
for a firm, we can maximize the natural logarithm of 
the likelihood function defined in (9) to estimate 

X , , , X ,  and I . In the next section, 

we discuss how to use analyst forecast data from 
I/B/E/S to calculate X(t) and m(t). 

3. Variables and data 

To examine the association between forecast accu-
racy and information precision, we model analyst 
forecast accuracy as a function of information preci-
sion, earnings volatility, firm size and earnings lev-
el. Omitting firm subscripts, we have the following 
cross-sectional regression model: 

.

43210

EARNINGS

SIZEEVOLIPFAC

 In the rest of this section, we define the regression 
variables, study their measurement, and discuss 
how to obtain data for them from I/B/E/S (1985.4-
2008.4) and COMPUSTAT (1985.4-2008.4). 

3.1. Forecast accuracy (FAC). We define ana-
lysts earnings forecast accuracy, FAC, as follows: 

T

tFSR

FAC

T

i 1

)(

ln1 , 

( ) ( )
( )

( )

abs FST t ESP t
FSR t

P t
, 

where ln denotes the natural logarithm function, t 

indexes quarters, T is the total number of quarters 

in the data sample, FTS(T) is the consensus ana-

lyst forecast of earnings at quarter t, EPS(t) are the 

actual earnings at quarter t, abs is the absolute value 

function, and P(t) the stock price at quarter t. Clear-

ly, analyst forecast accuracy defined above is just 

the inverse of the natural logarithm of the average of 

the absolute forecast errors that are scaled by the 

stock price. This measurement of analyst forecast 

accuracy is consistent with the practice in the ana-

lyst literature (see, for example, Hong and Kubik, 

2003). The quarterly earnings forecasts and actual 

quarterly earnings are obtained from I/B/E/S. The 

quarterly stock price per share is obtained from 

COMPUSTAT, which is the average of the three 

end-of-month stock prices in each quarter. 

3.2. Information precision (IP). We define IP, as 

follows: 

I

P
IP

ˆ
ln , 

T

tP

P

T

i 1 , 

where ln denotes the natural logarithm function, T is 

the total number of quarters in the data sample, P(t) 

is the stock price at quarter t, P is the time average 

stock price of a firm in the sample, and ˆ
I  is the 

estimate of I, which is defined in equation (3). Thus 

information precision defined above is just the natu-

ral logarithm of the inverse of the signal volatility in 

equation (3) that is scaled by the time average stock 
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price. We also obtain data for quarterly stock prices 

from COMPUSTAT. In the following, we address 

how to use the maximum likelihood estimation pro-

cedure discussed in section 2 to estimate I. 

To estimate I, we first have to use actual quarterly 

earnings and analyst forecasts of quarterly earnings 

reported in I/B/E/S to calculate X(t) and m(t), which 

are defined in equations (7) and (8), respectively. 

Previous studies have shown that analyst earnings 

forecasts are biased. Following Das, Levine and 

Sivaramakrishnan (1998), we estimate the bias in 

consensus analyst earnings forecasts for a firm as 

follows: 

T

tESPtFST

Bias

T

i 1                             (10) 

where FST(t) is the forecast of the earnings per 

share at quarter t, EPS(t) are the actual earnings per 

share at quarter t, and T is the total number of quar-

ters in the data sample. 

From equation (10), the unbiased forecast of the 

earnings at quarter t,UFS(t), is FTS(t) - Bias. 

According to equation (7), X(t) is the actual quarter-

ly earnings at quarter t. That is, X(t) = EPS(t). 

The estimate of the expected quarterly earnings growth 

rate, m(t), at quarter t, according to Lemma 2, is  

( ) ( 1) ( )
1 k

k
m t UFS t ESP t

e
, 

where EPS(t) is the actual earnings per share at 

quarter t, UFS(t+1) is the unbiased forecast of the 

earnings per share at quarter (t+1),  and k  are two 

of the six parameters to be estimated. 

We use the I/B/E/S summary file to obtain the 

consensus forecasts of quarterly earnings of a firm 

at each quarter. Specifically, in the summary file, 

in each month of a quarter, there is usually a con-

sensus forecast of the earnings in that quarter. In this 

paper, FST(t) in equation (10) is the mean of the 

monthly consensus forecasts of the earnings at 

quarter t. Actual quarterly earnings data are ex-

tracted from I/B/E/S actual files. The sample starts 

from the last quarter of 1985 and ends in the last 

quarter of 2008. 

3.3. Earnings volatility (EVOL). We consider the 

natural logarithm of earnings volatility, denoted by 

EVOL, in our analysis to control for the impact of 

earnings volatility on forecast accuracy. Earnings 

volatility can affect forecast accuracy by affecting 

the precision of information that analysts have about 

the expected earnings growth rates of firms. When 

the earnings process becomes more variable, it is 

more difficult for analysts to obtain precise informa-

tion about future earnings growth rates. So it is in-

teresting to know whether information precision still 

affects analyst forecast accuracy after controlling for 

earnings volatility. 

3.4. Firm size (SIZE). Firm size can also affect 

analyst forecast accuracy, since analysts tend to 

spend more effort to follow large firms and thus 

may obtain more precise information about their 

expected earnings growth rates. For example, Bhu-

shan (1989) and Atiase (1985) show that in the fi-

nancial market, financial analysts are likely to take 

more effort to gain precise information for large 

firms than for small firms, since precise information 

for large firms are more valuable for investors to 

generate higher profits than the same precise infor-

mation for small firms. Thus, analysts tend to have 

more precise information about the expected earn-

ings growth rates of large firms and thus produce 

more accurate forecasts. In this paper, we use the 

log market value of equity (SIZE) to control for the 

impact of firm size on analyst forecast accuracy. 

3.5. Earnings level (EARNINGS). Like firm size, 

earnings level also affects analyst forecast accuracy. 

For example, Butler and Saraoglu (1999) and Brown 

(2001) show that forecast accuracy is related to the 

level of earnings. In our analysis, we use the natural 

logarithm of the time-average quarterly earnings per 

share, denoted by EARNINGS, to control for the 

impact of earnings level on forecast accuracy. 

4. Empirical results 

To estimate the volatility of the signal, I , we max-
imize the natural logarithm of the likelihood func-
tion defined in equation (9). Since there is no 
closed-form solution, we use Nelder and Mead’s 
(1965) optimization approach to estimate ıI, which 
initial value is set at 15% for all the firms in our 
sample. The estimation exercise shows that the 

mean and standard deviation of ˆ
I  are about 22% 

and 18%, respectively. The relatively noisy signal 
for the expected earnings growth rate has a volatility 
of more than 300%, but the relatively precise signal 
about the expected earnings growth rate of a firm has a 
volatility of less than 5%. Thus the precision of infor-
mation that analysts have about unobservable expected 
earnings growth rates varies from firm to firm. 

Table 1 reports the statistics for all the variables of 

interest in our model. Since the means of these va-

riables are different from their medians, they are 

generally skewed. Table 2 shows the Pearson corre-

lation coefficients of the regression variables. As 

shown there, forecast accuracy, denoted by FAC, is 

positively correlated with the information precision 
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variable, IP, at the significance level of 0.0001. This 

empirical finding indicates that when analysts obtain 

more precise information about the expected earn-

ings growth rates of firms, their earnings forecasts 

become more accurate. In addition, analyst forecast 

accuracy (FAC) is negatively correlated with earn-

ings volatility, denoted by EVOL, also at the signi-

ficance level of 0.0001. The result indicates that 

when earnings are more variable, analysts tend to 

forecast future earnings less accurately. This finding 

is consistent with the result of Das, Levine and Siva-

ranakrishnan (1998), who also show that when earn-

ings are more variable, analyst forecasts become 

less accurate. Analyst forecast accuracy is also 

found to be positively associated with firm size, 

with a significance level of 0.0001. This result is 

expected, since analysts tend to spend more effort 

on large firms and thus acquire more precise infor-

mation about expected earnings growth rates, which 

may lead to more accurate earnings forecasts. Final-

ly, the accuracy of analyst earnings forecasts is ne-

gatively associated with the level of earnings, but 

not significantly. 

As discussed in the previous section, earnings 

volatility, firm size and earnings level can affect 

forecast accuracy by affecting the precision of 

information that analysts have about the expected 

earnings growth rates of firms. In Table 2, these 

three variables are indeed correlated with the in-

formation precision variable, IP, with signs that 

are consistent with our intuition. For example, 

earnings volatility is negatively correlated with 

information precision, since when earnings be-

come more variable, it is more difficult for ana-

lysts to obtain precise information about the ex-

pected earnings growth rates of firms. 

Since firm characteristic variables are correlated 

with the information precision variable, it is poss-

ible that firm characteristics but not information 

precision explain the cross-sectional difference of 

forecast accuracy. To understand whether the 

precision of information that analysts have about 

the expected earnings growth rate of a firm affects 

forecast accuracy, in the following, we consider 

all the firm characteristic variables in the follow-

ing multiple regression equation to test how fore-

cast accuracy is affected by information precision. 

,

43210

EARNINGS

SIZEEVOLIPFAC

 where firm subscripts are omitted for simplicity, and 

FAC, IP, EVOL, SIZE, and EARNINGS denote fore-

cast accuracy, information precision, earnings volatili-

ty, firm size and earnings level per share, respectively. 

Table 3 reports the regression results on how the preci-
sion of information that analysts have affects earnings 
forecast accuracy after firm characteristics are con-
trolled for. As shown there, the estimate of the coeffi-
cient for information precision, denoted by IP, is posi-
tive and significant at the 0.0001 level. To address a 
possible multi-collinearity problem, the Variance In-
flation Factor (VIF) is also reported. The VIF = 3.78, 
indicates that the regression result is not comprised by 
multi-collinearity. This empirical result is the same as 
the previous finding in the univariate analysis that 
when analysts obtain more precise information about 
expected earnings growth rates, their earnings fore-
casts tend to be more accurate. In our model, when 
analysts have no information ( ) about the 

expected earnings growth rate of a firm, they just use 
historical earnings data to forecast future earnings. In 
this case, our empirical finding indicates that analyst 
forecasts are less accurate than the forecasts when 
analysts have information about the expected earnings 
growth rate. Thus, our finding helps explain why ana-
lyst earnings forecasts are more accurate than the earn-
ings forecasts that are based only historical time-
series earnings data (see, for example, Brown, Foster 
and Noreen, 1985). In addition, this empirical result 
suggests that to forecast earnings more accurately, 
analysts may have to approach management, use 
better resources, or employ sharper skills to obtain 
more precise information about expected earnings 
growth rates. 

The estimates of the coefficients for earnings vola-

tility, firm size and earnings level are all significant. 

This is an interesting result, since this finding indi-

cates that the accuracy of the analyst earnings fore-

casts are affected not only by information precision 

but by firm characteristics, such as earnings volatili-

ty, firm size and earnings level. 

To get a complete picture, we also perform a similar 
analysis on individual analysts. Since a company is 
typically followed by more than one analyst, we 
randomly select a forecast from the pool of all fore-
casts, instead of using the consensus forecast. The 
same procedure is used to estimate the IP variable 
then. The regression result is reported in Table 4. 
The coefficients estimates are very close to those in 
the previous regression with consensus forecasts. 

Conclusions 

In this paper, we have presented a simple conti-
nuous-time model of corporate earnings to examine 
how the precision of information that analysts have 
about the unobservable expected earnings growth 
rate of a firm affects earnings forecast accuracy. To 
forecast future earnings, analysts have to use histori-
cal earnings data and the information they have about 
the unobservable expected earnings growth rate of a 



Investment Management and Financial Innovations, Volume 8, Issue 3, 2011 

75 

firm to estimate the value of the expected earnings 
growth rate. Thus, our model captures the notion that 
in the financial market, analysts use more than histori-
cal earnings data to forecast future earnings. 

We use biased analyst earnings forecasts to con-

struct unbiased earnings forecasts, and develop a 

maximum likelihood procedure to estimate the pre-

cision of information that analysts have about the 

unobservable expected earnings growth rate of a 

firm. Our estimation exercise shows that the preci-

sion of information that analysts have varies from 

firm to firm. For some firms, analysts have relative-

ly very precise information; for some firms, the 

information that analysts have about future earnings 

growth is relatively noisy. 

We use data from I/B/E/S and COMPUSTAT to 

cross-sectionally analyze how analysts’ information 
 

precision affects forecast accuracy. By controlling 

for firm characteristics such as earnings volatility, 

firm size and earnings level, we find that earnings 

forecast accuracy is positively associated with the 

precision of information that analysts have about 

the expected earnings growth rates of firms. This 

finding indicates that when analysts have more pre-

cise information about expected earnings growth 

rates, their earnings forecasts are more accurate. This 

empirical finding helps explain why analysts’ earn-

ings forecasts are more accurate than the earnings 

forecasts based only on past realized earnings (see, 

for example, Brown, Foster and Noreen, 1985), 

and suggests that to forecast future earnings more 

accurately, analysts may have to approach man-

agement, use better resources, or employ sharper 

skills to obtain more precise information about 

future earnings growth rates. 
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Appendix 

Proof of Lemma 1. We follow Brennan and Xia (2001) and Wang (1993) to use Theorem 12.1 in Liptser and Shi-

ryayev (1977) to show Lemma 1. Using the similar notation, we rewrite our problem as follows:  

0 1

I

s s s

X

dWdI
ds a a dt

dWdX
, 

0 1d a a dt dW , 

where ds is a 2×1 vector signal, which is used by analysts to estimate μ(t), the state variable. Other parameters are as 

follows: 

0 1

0 1
,  , 

0 1
s sa a  

0
,

0

I

s

X

 

0 1  and .a k a k  

We also define  

2

2

2

0
,   and 0

0

I

ss s X

X

q q q , 

where X X X and X  denotes the correlation between Wμ(t) and WX(t). 

Let ( ),  ( ):tF X I t  be the analyst’s information set at time t. Suppose that the prior is (0) ( (0), (0))N m v . 

Then, according to Liptser and Shiryayev (1977), the posterior mean of μ(t), ( ) | tm t E F , and the posterior va-

riance of μ(t), ( ) ( )( ) |T

tv t E m m F , are given, respectively, by the following stochastic differential 

equations:  

1

0 1 1( ) ( ) ( ) T

s s ss s sdm t a a m t dt v t a q q dW
                                                                                     (A1) 

2 1

1 1

( )
2 ( ) ( ) ( )

T
T T

s s ss s s

dv t
v t v t a q q v t a q

dt  ,                                                                              (A2) 

 

where the innovation process, ( ) [ , ]T

s I XW t W W , defined by  

1

0 1 ,s s s sdW ds a a m dt
 
is a vector of Brownian motions. 

The earnings process then becomes  

( ) ( ) X XdX t m t dt dW
                                                                                                                                      (A3) 

 

The solution to the Ricatti equation in (A2) is given by: 
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2

1

2

1

(0)

2 1 (0)

(0)

(0)

( )
1

v v t

v v

v v t

v v

v v e
v t

e
, 

where 

2 2 2
2 1 3 1 2

1 1

4 ,  , 
2 2

b b
b bb v v

b b
, 

1 2 2

1 1

X I

b , 

2 2 2 2

2 32 /  and  / .X X X Xb k b  

Since 
2 1X ,

1 0b  and 
2 2 2 2 2

3 / ( 1) 0X X Xb , hence 
2

2 1 34 0b bb  and there is always a 

solution to the Ricatti equation. 

In this paper, we follow Wang (1993 and 1994) to consider the steady-state solution, in which estimation errors do not 

change over time. If the economy starts at time zero, when t is very large, the convergence of learning to the steady 

state is guaranteed, since 0 . When learning reaches the steady state, ( ) / 0dv t dt . Let v be the solution to the 

Ricatti equation in the steady state. Then v = v2. 

In the steady state, we have: 

1 2( ) I Xdm k m dt a dW a dW ,                                                                                                                     (A4) 

where 

1 2 and .
X

I X

vv
a a  

Equation (A4) can also be simplified as: 

( ) m mdm k m dt dW  ,                                                                                                                                   (A5) 

where mW  is a standard Brownian motion and 

2 2 2

1 2m a a
                                                                                                                                                               (A6) 

Proof of Lemma 2. The solution to stochastic equation (A5) is: 

( ) ( )( ) ( ( ) ) ( )
s

k s t k s

m m
t

m s e m t e dW  ,                                                                                       (A7) 

where s > t. 

The solution to equation (A3) is: 

( ) ( ) ( ) ( )
s s

X X
t t

X s X t m d dW
                                                                                                           (A8) 

Substituting m( ) from equation (A7) into equation (A8) yields 

s

t
XXm

s

t

skmtsk WdWde
k

e
k

tm
tstXsX

~~
11 .                             (A9) 

Since the conditional expectation of the last two terms in the left hand of equation (A9) are zero, we have: 

( )
( ) )

( ) ( ) | ( ) ( ) 1 k s t

t

m t
UST s E X s F X t s t e

k
. 
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Lemma 3. Let ( )X t  and ( )m t  be defined as above. Let 
1

 and 
2

 be the standard deviations of ( )X t  and 

( )m t , respectively. Let 12 12 1 2  be the covariance of these two random variables, where 1 2  is the correlation 

between these two variables. Define ( ) (1 )/( )ii e ik , where i  is a non-negative integer and k  is the parameter to 

be estimated. Then ( )X t  and ( )m t  are both normal, with the following conditional moments:  

1 1( ) | ( ) | 0m t X tE t F E t F , 

2
2 2

1 1 2

2
( ) | 1 2 (1) (2) 1 (1)m mX

X t XVar t F
k k

 ,                                                                      (A10) 

2 2

2 1( ) | (2)m t mVar t F
 ,                                                                                                                            (A11) 

2

12 1( ), ( ) | (1) (1) (2)m
X m t mXCov t t F

k
 .                                                                             (A12) 

Proof of Lemma 3. According to the normal property of a Brownian motion, straight calculations lead to the result. 

The calculation of 
2

m  and mX  is summarized in the following lemma. 

Lemma 4. Let v be the estimation error in the steady state, as defined in the appendix. Then we have: 

22
2

2 2

( )X

m

I X

vv
,                      (A13) 

mX X v ,                                                                                                                                                        (A14) 

where estimation error v  is a function of X , , , X ,  and I . 

Substituting 
2

m  and mX  from equations (A13) and (A14) into equations (A10)-(A12), we can have 1, 2 and 12 

expressed as the functions of X, μ, k, μX,  and I. 

Proof of Lemma 4. From the definitions of a1, a2 and 
2

m  above, we have: 

22
2 2 2

1 2 2 2

( )X

m

I X

vv
a a , 

According to equations (A4) and (A3), we have 

2cov( , )mX X Xdt dm dX a dt v dt . 

Table 1. Descriptive statistics for variables (n = 319) 

 FAC IP EVOL SIZE EARNINGS 

Mean -0.15 5.32 -1.52 8.21 -1.28 

Median -0.15 5.40 -1.60 8.13 -1.17 

SD 0.03 0.62 0.63 1.31 0.73 

Minimum -0.27 2.60 -2.79 4.43 -5.53 

Maximum -0.11 6.62 0.72 12.00 1.33 

Notes: Variable definitions: n = the sample size; FAC = The inverse of the log average of the absolute error scaled by the stock 

price; IP = The log of the inverse of  the signal volatility scaled by the stock price; EVOL = The log earnings volatility; SIZE = The 

log of the average market value of equity; EARNINGS = The log of average earnings per share. 

Table 2. Pearson correlation coefficients among variables (n = 319) 

 FAC IP EVOL SIZE EARNINGS 

FAC 1.000     

IP 0.625 ** 1.000    

EVOL -0.681 ** -0.245 ** 1.000   
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Table 2 (cont.). Pearson correlation coefficients among variables (n = 319) 

 FAC IP EVOL SIZE EARNINGS 

SIZE 0.441 ** 0.537 ** -0.068 1.000  

EARNINGS -0.023 0.155 * 0.472 ** 0.145 * 1.000 

Notes: Variable definitions: n = the sample size; FAC = The inverse of the log average of the absolute error scaled by the stock 

price; IP = The log of the inverse of the signal volatility scaled by the stock price; EVOL = The log earnings volatility; SIZE = The 

log of the average market value of equity; EARNINGS = The log of average earnings per share. Significance: ** < 0.0001, * < 0.05.  

Table 3. Information precision and consensus forecast accuracy  

(FAC and IP computed from consensus forecasts, n = 319) 

0 1 2 3 4FAC IP EVOL SIZE EARNINGS  

 IP EVOL SIZE EARNING Adj. R2 VIF 

Predicted signs + - + +   

Estimated coefficient 0.014 -0.031 0.004 0.009 75% 3.78 

t-value 7.32 * -16.76 * 4.71 * 5.55 *   

Notes: Variable definitions: n = the sample size; FAC = The inverse of the log average of the absolute error scaled by the stock 

price, using consensus forecasts; IP = The log of the inverse of the signal volatility scaled by the stock price, using consensus fore-

casts; EVOL = The log earnings volatility; SIZE = The log of the average market value of equity; EARNINGS = The log of average 

earnings per share; VIF = Variance Inflation Factor. Significance: *<0.0001.  

Table 4. Information precision and individual forecast accuracy  

(FAC and IP computed from random individual forecasts, n = 319) 

0 1 2 3 4FAC IP EVOL SIZE EARNINGS  

 IP EVOL SIZE EARNING Adj. R2 VIF 

Predicted signs + - + +   

Estimated coefficient 0.011 -0.046 0.004 0.009 78% 3.02 

t-value 5.70 * -17.03 * 3.94 * 7.58 *   

Notes: Variable definitions: n = the sample size; FAC = The inverse of the log average of the absolute error scaled by the stock 

price, using a randomly selected forecast on each company; IP = The log of the inverse of the signal volatility scaled by the stock 

price, using a randomly selected forecast on each company; EVOL = The log earnings volatility; SIZE = The log of the average market 

value of equity; EARNINGS = The log of average earnings per share; VIF = Variance Inflation Factor. Significance: * < 0.0001.  

 


	“Information quality and analyst forecast accuracy”

