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Portfolio optimization in a mean-semivariance framework 

Abstract 

This paper demonstrates a mean-semivariance approach to measure the downside risk in optimal portfolio selections. 

The authors measure the return dispersions below the expected value of investment return. Using semivariance for 

measuring the downside risk is consistent with the intuitive perception of risk of investors. The mean-semivariance 

framework offers investors a practical guidance in asset allocations and portfolio management that aim to minimize the 

downside risk in investment. The authors use a sample of seven exchange-traded index funds (ETF) that mimic various 

categories of securities such as government bonds, municipal bonds, investment grade bonds, high-yield bonds, real 

estate bonds, mortgage backed securities (MBS), and large capitalization stocks to compare and test the differences 

between the optimal portfolios and asset allocations constructed out of the mean-semivariance approach and the tradi-

tional mean-variance approach. The test results show that the mean-semivariance approach provides certain desirable 

benefits unavailable to a traditional mean-variance approach. Specifically, optimization under the conditions of the 

semivariance model produces different portfolio strategies that at least maintain and at best improve the expected re-

turn of the portfolio using traditional mean-variance model while minimizing its downside risk exposure. Our findings 

of the semivariance model have practical implications for both individual investors and institutional investors for asset 

allocations and optimal portfolio selections, as well as managing their downside risk exposure.  

Keywords: downside risk measurement, lower-partial variance, portfolio choice, investment decisions, asset allocations.  

JEL Classification: G10, G11, G17, G20, G30, G32. 
 

Introduction© 

In the wake of 2008-2009 global financial crisis and 

subprime market meltdown, investors are feeling the 

pain of heavy losses and becoming more concerned 

about the downside risk of their investments. If an 

investor using a buy-hold strategy invested in a 

broadly diversified index fund or exchange traded-

fund (ETF) that mimics a broad market index such 

as S&P 500 index, Nasdaq, and Dow Jones Industri-

al Average (DJIA), for a holding period from Octo-

ber 2007 to February 2009, his investment would 

have lost over 50 percent on his index fund that 

tracks S&P 500 or Nasdaq, and close to 50 percent on 

his index fund that tracks Dow Jones Industrial Aver-

age. Even for a well-managed Warren Buffet’s 

Berkshire Hathaway investment fund which has 

consistently outperformed the market lost over 40 

percent during this holding period which is in the 

midst of global financial crises. It seems that di-

versification alone is no longer sufficient to mi-

nimize risk. In a volatile stock market, the chal-

lenge for investors is to select an optimal portfolio 

that minimizes the downside risk while maximiz-

ing the upside return. 

Financial economists and practitioners in the finan-

cial markets have been constantly searching for 

those investment strategies that can meet this chal-

lenge. Modern Portfolio Theory (MPT) founded by 

the seminal work of Markowitz (1952, 1970, 1987) 

explicitly addresses the tradeoff between risk and 

return on an efficient frontier curve. The Markowitz 
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Efficient Frontier simultaneously considers the re-

turn, risk of invested assets and the correlation be-

tween returns. The curve indicates those portfolios 

that are at their maximum return for a given level of 

risk, or at their minimum risk for a given level of 

return. Markowitz’s work has greatly changed the 

behavior of investors by providing more insights to 

general investors and fund managers. Today, Marko-

witz’s Mean-Variance framework is widely adopted 

by practitioners and is perceived as the most standard 

optimization framework for modern investment 

management. 

While the Markowitz mean-variance framework is 

sound in theory, there is however, an ongoing criti-

cism as to how its risk is measured. The risk in the 

Markowitz’s mean-variance framework is meas-

ured in terms of the variance of expected portfolio 

returns. The underlying assumption of using va-

riance as the appropriate measure for risk is that 

investors weigh the probability of negative returns 

equally against positive returns.  As argued by vari-

ous scholars, variance is a measure that captures 

both the upside and downside movements of a se-

curity’s returns (Fishburn, 1977; Tse, Uppal & 

White, 1993; and Swisher & Kasten, 2005). It is 

thus an inappropriate risk measurement. Construct-

ing an efficient frontier with an inappropriate risk 

measure might lead to a nonsensical result in port-

folio optimization. 

Because of this limitation in using variance as a risk 

measurement, various downside-risk measurements 

have been proposed and developed. One of the 

downside risk measurements is semivariance. By 

definition, a downside-risk measurement measures 
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only the returns below a certain threshold. This thre-

shold captures the risk perspectives from investors 

to investors. Unlike standard deviation, downside 

risk accommodates different views of risk. Suppose 

an investor is concerned only about losing the initial 

wealth, that threshold would be zero, and the proba-

bility of losing the principal would be viewed as 

risky. Suppose an investor’s minimum required rate 

of return is 10 percent, any return below ten percent 

would be considered risky. In the case of institu-

tional investors, this threshold can also be certain 

peer performance benchmark. 

Semivariance, a special case of downside risk mea-

surement, is defined as the weighted sum of square 

deviations from certain threshold considering only 

those values below the expected value of returns 

(Ballestero, 2005). Semivariance also receives early 

support from Markowitz (1959, 1970), who pre-

sented it as an alternative risk measure. Since inves-

tors are more concerned about downside risk than 

about overall volatility, measuring risk by semiva-

riance, instead of variance, produces better portfo-

lios Markowitz (1959). The study of mean-semiva-

riance efficient frontier has been focused on the nu-

merical calculation of the frontier and comparison 

between mean-semivariance and mean-variance fron-

tiers. To our knowledge, there has been a paucity of 

research in empirically testing the advantages of the 

semivariance model over the variance model. 

In this paper, we intend to fill this gap by empirical-

ly constructing efficient portfolios and efficient fron-

tiers using the mean-semivariance model as well as 

the mean-variance model so as to compare the dif-

ferences between the two models’ efficient frontiers 

and asset allocations. While acknowledging the 

usefulness of other downside risk measurements 

such as Variance-at-Risk (VaR) and Conditional 

Variance-at-Risk (VarCVaR), we do not intend to 

include VaR or CVaR into our portfolio optimiza-

tion framework for the reasons discussed in the lite-

rature review. We focus instead on asset allocations 

and portfolio optimization in a mean-semivariance 

framework. Our selection of investment assets are 

based on the investment portfolios in the insurance 

industry, the industry which is most concerned with 

the downside risk in security investment. 

The remainder of this paper is organized as follows. 

Section 1 outlines the literature on downside risk mea-

surements. Section 2 describes the mean-semivariance 

model; section 3 presents the data and empirical 

asset allocation using mean-semivariance frame-

work, and discusses empirical results; and the last 

section concludes this research. 

1. Downside risk measurements 

1.1. Markowitz’s mean-variance framework. Mar-

kowitz’s mean-variance approach, which leads to 

optimal investment decision, has two important 

limitations. Firstly, it assumes that the distribution 

of investment returns is jointly elliptically distri-

buted, i.e., a symmetric bell-shaped distribution. 

However, if the underlying return data is not nor-

mally distributed, the variance is likely to give mis-

leading results. A number of studies have demon-

strated that investment returns are not normally dis-

tributed (Fama & Roll, 1968; and Jansen & de 

Vries, 1991). In the real financial world, security 

returns tend to be asymmetrically distributed, e.g., 

approximately lognormal distribution. The skewed 

distribution of investment returns makes the va-

riance as an inefficient risk measure, because va-

riance treats the favorable upside dispersion of in-

vestment return over the mean value of return as a 

part of risk and penalizes it as much as the unfa-

vorable downside deviation from the mean re-

turns. If the returns are not normally distributed, 

investors using variance or standard deviation to 

measure risk are likely to reach wrong asset allo-

cation decisions. Skewness and kurtosis in real 

return data with non-normal distributions can 

cause variance or standard deviation to underes-

timate risk. Secondly, the mean-variance ap-

proach ignores the investor’s risk aversion. Because 

the variance can only measure the dispersion of re-

turns distribution around a mean, it cannot be custo-

mized for individual investors’ aversion. 

Moreover, the real-world implementation of Marko-

witz’ mean-variance optimal portfolio construction has 

many pitfalls. The optimal portfolio constructed in a 

mean-variance framework may not lead to an optimal 

portfolio that optimizes expected returns while mini-

mizing risk. Mitchaud (1989) indicates that these 

real world portfolio optimizers are essentially “error 

maximizers” because “optimizers” tend to treat the 

inputs as if they were exact quantities, while in reality 

they can only be estimated with error. The optimal 

portfolios constructed based on this framework tend 

to suggest large bets on stocks with large estimation 

error in expected returns, often leading to poor-out-

of-sample performance. In fact, Markowitz (1970) 

himself realized the drawback of variance. He showed 

that both the downside risk measurement and the 

variance measurement can produce the same cor-

rect results when return distributions are normal. 

However, in situations where return distributions are 

not normal, the downside risk measurement is more 

likely to produce a better solution. 
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1.2. Alternative risk measures. Roy (1952) was the 

first to discuss the downside risk measure in in-

vestment literature. He asserted that it is reasonable 

for investors to reduce the possibility of disaster as 

much as possible, and perceived the downside devia-

tion as the “safety-first” rule, which measures the 

investment risk by the probability of investment 

value falling below certain target or disaster level. 

He adds a criterion to Markowitz’s efficient fron-

tier which selects the efficient portfolio with the 

lowest probability to fall short of a given target val-

ue. Specifically, given an expected return, r, and 

standard deviation, s, investors tend to choose the 

portfolio that has the lowest possibility of falling 

below the disaster level, d. That is, they will try to 

maximize the reward-to-variability ratio, (r-d)/s. 

Roy’s main contribution  the concept that investors 

will prefer the principal of safety first when faced 

with uncertainty  is instructive to the later evolu-

tion of the downside risk measurement research. Fish-

burn (1977) uses a utility function model to incorpo-

rate downside risk based on risk aversion level and a 

target return. Bawa (1978) extended Roy’s work 

from 1st
 order to a more generalized n

th
 order “safety- 

first” rule, and showed that the n
th

 order “safety-

first “rule is computationally feasible. Tse et al. 

(1993) further discussed the “safety-first” rule in a 

dynamic structure. 

In the literature of risk management, several risk 
measures are proposed for measuring downside 
risks.  The most prevalent risk measures debated in 
the risk management literature are Value-at-Risk 
(VaR) and Conditional Value-at-Risk (CVaR). 
CVaR is the conditional expectation of losses that 
exceed the VaR level and is proposed for direct and 
asymmetric control over the distribution of residual 
errors, and for constraining one of its tail means not 
to exceed some pre-specified value (see Jorion, 
1997; Trinidade, Uryasev, Shapiro & Zrazhevsky, 
2007; Rachev, Stoyanov & Fabozzi, 2011).  In 
other words, both VaR and CVaR are downside 
risk measures where the objective is to maximize 
expected return given a VaR or a CVaR, respec-
tively. Campbell, Huisman, & Koedijk (2001) 
incorporates VaR as a shortfall constraint into the 
portfolio selection decision by maximizing ex-
pected return subject to the constraint that the 
expected maximum loss should meet the VaR 
limits set by the risk manager. They measure risk 
in terms of the VaR over and above the risk free 
rate on the initial wealth. 

However, both VaR and CVaR require an investor 

to specify a probability level of cumulative losses 

(Wiener, 1998).  The problem with VaR or CVaR is 

that the investor has to specify a holding period, 

typically a very short-term horizon from 1 to 10 

days and a level of probability of loss exceeding the 

VaR limit. Such a short-term horizon is not suitable 

for asset allocations and portfolio optimization for 

long-term investors. Moreover, the greater the time 

horizon is the less precise is the efficient VaR fron-

tier (Campbell, Huisman, & Koedijk, 2001). Camp-

bell et al. (2001) also shows that the optimal portfo-

lios with VaR constraints are sensitive to the confi-

dence level selected. In addition, VaR ignores ex-

treme events below the specified quantile. Indeed, 

the mean-VaR optimization does not necessarily 

improve upon the portfolio optimization in a mean-

variance framework (Alexander and Baptista, 2002). 

In fact, when switching from mean-variance frame-

work to mean-VaR framework, we may end up with 

more volatile portfolios. Many researchers also sug-

gest that VaR is not a coherent risk measure since 

the subadditivity property is not satisfied. In other 

words, if we combine several securities into a port-

folio, the combined VaR at certain confidence level 

may not necessarily result in a lower VaR than the 

sum of the VaRs of individual securities. In fact 

we may end up with a higher combined VaR than 

the sum of the VaRs. In addition, VaR is also 

criticized for its incompleteness in risk measure-

ment since it cannot provide any information 

about the magnitude of losses once the VaR limit 

is exceeded. The drawbacks of VaR can be miti-

gated by CVaR which is a conditional expectation 

that gives the expected loss beyond the VaR. For 

example, while VaR at 99% measures the maximum 

loss in 99% of cases, CVaR at 99% measures the 

average loss in the 1% of the worst cases. That is, 

CVaR measures not only the magnitude but also the 

likelihood of losses.  However, for portfolio optimi-

zation, CVaR model requires either an assumption 

about the return distribution or a substantial amount 

of return observations below the target return which 

could pose a significant problem of real world data 

limitations for empirical research. For example, for 

a sample of 100 real world observations, a CVaR at 

99% will be based on 1 observation only, namely, 

1% (1 out of 100 observations). Although we can 

address this limitation using simulation techniques 

to generate larger samples, this is often a practical 

disadvantage of this model. 

1.3. Semivariance as a downside risk measure-

ment. The two downside risk measurements sug-

gested by Markowitz are of particular interest in 

finance: 1) the semivariance below the mean value; 

and 2) the semivariance below the target return. 

Though he theoretically preferred semivariance, Mar-

kowitz still insisted on using variance as the risk 

measure simply because of the difficulty in compu-

ting lower semivariance. The major difficulty lies in 



Investment Management and Financial Innovations, Volume 8, Issue 3, 2011 

61 

gauging the co-movement, or correlation of Lower 

Partial Moments (LPM), which is the most impor-

tant provision for investment diversification. 

Complication in calculation has not prevented 
scholars from pursuing the study and research on 
the downside risk measurement. Based on the con-
cept of downside risk, Fishburn (1977) and Har-
low and Rao (1989) introduced a generalized form of 
lower partial moments (LPM) and developed the 

“ ( )t ” model, in which t represents the target 

return of investment or disaster level as proposed by 

Roy (1952), and  denotes the investor’s risk aver-

sion. The higher the value of , the greater is the 

investor’s risk aversion. For risk-neutral investors, 

= 1; for risk seeking investors, < 1; and for risk 

averse investors, > 1. Fishburn (1977) also intro-

duced the Mean-Lower Partial Moment model 

(MLPM-model). Note that when = 2 and t equals 

to the mean value of the investment return, and the 

“ ( )t ” model is specified as a LPM model. Har-

low (1991) employed LPM as a downside risk 
measure in portfolio selections. He defined LPM as: 

,
n

p

T

xR pn RPLPM
p

where pP  is the pro- 

bability that return, pR  occurs. He explained that the 

type of “moment,” n, specified in the LPM equation 
captures an investor’s preferences. For n = 0, the 
risk measure becomes a 0

th
-order moment (LPM0) 

which measures the probability of falling below the 
target rate. However, for n = 1, LPM1 becomes the 
expected deviation of returns below the target. For n 
= 2, LPM2 is analogous to variance, in that it is a 
probability weighting of squared deviations. Thus, 
LPM2 can be referred to as a target semivariance. 
Harlow (1991) further explained that many popular 
notions of risk are special cases of the generalized 
LPMn measure. For example, with n = 0 and a target 
rate = 0%, LPM0 is simply the probability of a loss. 
For n = 2 and a target rate = mean return, LPM2 
becomes the traditional semivariance. Overall, 
LPM1 (target shortfall) and LPM2 (target semiva-
riance) provide an intuitive set of risk definitions 
that are more useful than traditional approaches 
(Harlow, 1991). 

Although theoretically and intuitively sound, LPM 

has its own limit, because it creates much more 

complexity in computation than does the variance 

measurement. Because Harlow and Rao (1989) 

failed to consider the correlation of individual 

asset returns, i.e., co-movement between individ-

ual asset returns that fall below the target return, 

and because the co-movement is very important 

for risk diversification, their results can only be 

limited to those assets whose returns are perfectly 

or highly correlated. 

Foo & Eng (2000)’s downside risk optimization 

model extended the former work of Harlow & Rao 

(1989) by incorporating the model with downside 

covariance of correlated asset returns. But their 

work is still complicated and computationally bur-

dened. Hogan & Warren (1974) introduced the con-

cept of co-lower-partial-variance, which measures 

risky asset and market portfolio. Bawa & Linden-

berg (1977) further developed this co-lower-partial-

variance measure to an n-degree framework called 

generalized asymmetric co-LPM. 

Ballestero (2005) developed a semivariance matrix 

using a strictly mathematical derivation while rely-

ing on the validity of Sharpe’s beta regression equa-

tion. This approach has greatly eased the computa-

tion complexity, allowing one to obtain the compu-

tational results of the semivariance model from the 

traditional mean-variance model. 

Since the 1990s, researchers have started to apply the 

downside risk measures to their empirical research. 

Sortino & Meer (1991) introduced the downside dev-

iation, i.e., below-target deviation, and the reward-

to-downside variability ratio as the tools for the 

measurement of downside risk. Balzer (1994) 

discussed the skewness existed in asset returns, 

and the issues of applying downside variance. 

Bookstaber & Clarke (1985) and Merriken (1994) 

tried consecutively to prove how the semivariance 

could be applied in the downside risk manage-

ment of different hedging policies using stock 

options and interest rate swaps. 

It is not difficult to see that the academic downside 

risk research has emphasized in general asset classes, 

e.g., the optimization of individual stocks, and the 

performance evaluation of various mutual funds. 

However, few researchers have applied this theory 

into other industries such as insurance industry 

which also needs the portfolio theory to manage 

asset allocation efficiently. The insurance indus-

try, which has large amount of fund to invest, 

needs further discussion in the downside risk op-

timization theorem. 

2. Portfolio optimization using mean-

semivariance framework 

The underlying principle for semivariance model is 

the same as the variance model, in that investors 

are willing to bring downside risk as low as possible 

while keeping the rate of return above a certain level. 

The definition of semivariance below the mean value 

can be expressed by the following formula: 

~
2

1 1

( ) [( ) ( )]
n n

jt j j j

j j

SV r r p t ,            (1) 
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where for each observation 
~

j
r satisfying 

~

1 1

n n

jt j j j

j j

r r .                                               (2) 

Similarly, semivariance above the mean value can 
be expressed as: 

~
2

1 1

( ) [( ) ( )]
n n

jt j j j

j j

SV r r p t                 (3) 

 

with 

~

1 1

n n

jt j j j

j j

r r ,                                              (4) 

 

where ( )p t  denotes the probability. If we assign 

the same probability for all observations, then we 

have ( )p t = 1/T. 

To further derive the simplified formula for semiva-

riance model, we have to make an important as-

sumption, which is the validity of Sharpe (1964) 

beta regression equation: 

.~~~
jjjj rr

                                                 
(5) 

 

It states that the random variable of the jth asset’s 

return is related to the market portfolio return, 

where j  and j  are constant, and j

~
 is a random 

error with zero covariance for ( ,~
j h

~
), zero cova-

riance for ( ,~
j Mr~ ). The market portfolio is the 

weighted sum of asset returns. 

In addition, we can obtain j  by: 

,
~,~cov

2

M

Mj

j

rr
                                                    (6) 

where
 

Mj rr ~,~cov  is the covariance between the re-

turn of the jth asset and the return of the market 

portfolio, 
2

M  is the variance of the market return. 

Based on equation (4), we can get: 

,~~
jjjj rrrr                                           (7) 

where j
r and M

r are expected return of the jth asset and 

market portfolio respectively. 
~

j  has zero mean value. 

Considering all the assets in the portfolio and adding 

them up based on equation (8), 

1 1

( ) ( )
n n

j j j M M j j

j j

r r r r ,              (8) 

where 

n

j

jj

1

.
~~

                                                      (9) 

Based on (7), we can rewrite the equation of SV (>) as: 

2

1

( ) [( ( ) ) ( )]
n

M M j j

j

SV r r p t . (10) 

When the level of diversification goes to infinity, 
we can prove that: 

).~()()(lim
,

hjh

hj

j
L

rrSVSV       (11) 

The definition of SV(>) and SV(<) implies that 

2

1 1 1

( ) ( ) [ ] ( )
t n n

jt j j j

t j j

SV SV V r r p t .  (12) 

Hence, we can get the expression of SV(<) by sub-
tracting SV(>) from V: 

lim ( ) lim ( )
L L

SV V SV ,                             (13) 

hj

hj

hjjh
L

rrSVVSV
,

)]~([)(lim .

  

(14) 

Note that the definition of the level of diversifica-
tion is: a portfolio is considered to reach a level L of 

diversification if:
 1,...,

max 1 /
j

j n
L

 
and n/L = q with 

1Q q  and 
1

1
n

j

j

, 0
j for all j. Q is a 

constant that defines the bound of q. Then the higher 
the level of diversification is reached, i.e., the higher 
the value of L, the lower is the greatest weight. 

From equation (13), we can see the whole calcula-
tion is much simplified, and thus, all the data or 
parameter can thus be obtained. 

Hogan & Warren (1972) presents the essential ma-

thematical properties of mean-semivariance models, 

where they prove the convexity and differentiability 

of this model. Their contributions make the theoreti-

cal and computational viability of mean-semiva-

riance model guaranteed. 

3. Data and empirical tests 

In this section, we employ a sample of seven ex-
change-traded index funds (ETF) that mimic various 
categories of securities, such as government bonds, 
municipal bonds, investment grade bonds, high-yield 
bonds, real estate bonds, mortgage backed securities, 
and common stocks to compare and test there is any 
difference between the two models in asset allocation 
and optimal portfolios constructions. From the CRSP 
database, we obtain the monthly return data for each 
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category of ETFs for the period from August 2002 to 
December 2007. The rationale for selecting this period 
is that this period does not have extreme downside 
movements nor upside movements as we have wit-
nessed in the period from 2008 to 2010. 

The rationale for using ETFs rather than individual 

stocks and bonds is that ETF is an index fund that 

attempts to track a basket of stocks, bonds or certain 

indexes but can be traded like a stock on the market, 

where it experiences price fluctuations throughout 
 

the trading day. This provides a broad benchmark to 

measure the return of a particular asset type and 

enables us to approach the real market return for a 

certain type of investments as a whole.  

3.1. Application of Markowitz’s mean-variance 

efficient frontier. The descriptive statistics of our 
sample are reported in Table 1 and the optimal port-
folio asset allocation results constructed out of the 
Markowitz mean-variance efficient frontier model are 
reported in Table 2. 

Table 1. Summary statistics of the monthly returns on investment assets 

Asset types N Mean return Median return Std. dev. 

Government bond 53 0.333% 0.360% 1.792% 

Muni bond 53 0.554% 1.066% 3.544% 

High yield bond 53 0.662% 1.103% 5.845% 

Real estate 53 1.979% 3.111% 4.437% 

MBS 53 0.584% 1.027% 3.383% 

Investment grade bond 53 0.510% 0.713% 1.816% 

Large cap stocks 53 1.037% 1.252% 3.171% 

Value-weighted market returns 53 1.049% 1.282% 3.251% 

Table 2. Results of the Markowitz Mean-Variance Efficient Frontier 

c 
Portfolio 
Std.dev 

Portfolio ex-
pected returns 

Govern-
ment bond 

Muni bond 
High yeld 

bond 
Real estate MBS 

Investment 
grade bond 

Large cap 
stocks 

0.744 1.896 0.930 0.000 0.000 0.000 25.000 0.000 65.000 10.000 

0.753 1.899 0.930 0.000 0.000 0.200 25.000 0.000 64.800 10.000 

0.761 1.910 0.931 0.000 0.000 0.850 25.000 0.000 64.150 10.000 

0.770 1.923 0.932 0.000 0.000 1.590 25.000 0.000 63.410 10.000 

0.779 1.938 0.934 0.000 0.000 2.410 25.000 0.000 62.590 10.000 

0.788 1.957 0.935 0.000 0.000 3.360 25.000 0.000 61.640 10.000 

0.797 1.979 0.937 0.000 0.000 4.450 25.000 0.000 60.550 10.000 

0.805 2.024 0.940 0.000 0.000 5.670 25.000 1.650 57.680 10.000 

0.814 2.085 0.944 0.000 0.000 7.120 25.000 3.970 53.910 10.000 

0.823 2.165 0.948 0.000 0.000 8.900 25.000 6.800 49.290 10.000 

0.832 2.273 0.954 0.000 0.000 11.140 25.000 10.360 43.500 10.000 

0.841 2.380 0.960 0.000 0.060 13.780 25.000 12.500 38.660 10.000 

0.849 2.519 0.967 0.000 3.240 17.270 25.000 12.500 31.990 10.000 

0.858 2.707 0.975 0.000 6.940 21.750 25.000 12.500 23.810 10.000 

0.867 2.986 0.987 0.000 12.020 27.920 25.000 12.500 12.550 10.000 

0.876 3.336 1.000 0.000 17.110 35.390 25.000 12.500 0.000 10.000 

0.885 3.435 1.004 0.000 13.800 38.700 25.000 12.500 0.000 10.000 

0.893 3.567 1.008 0.000 9.710 42.790 25.000 12.500 0.000 10.000 

0.902 3.748 1.014 0.000 4.510 47.990 25.000 12.500 0.000 10.000 

0.911 3.916 1.019 0.000 0.000 52.500 25.000 12.500 0.000 10.000 

0.920 3.916 1.019 0.000 0.000 52.500 25.000 12.500 0.000 10.000 

0.929 3.916 1.019 0.000 0.000 52.500 25.000 12.500 0.000 10.000 

0.937 4.233 1.026 0.000 0.000 61.370 25.000 3.630 0.000 10.000 

0.946 4.371 1.029 0.000 0.000 65.000 25.000 0.000 0.000 10.000 

0.955 4.371 1.029 0.000 0.000 65.000 25.000 0.000 0.000 10.000 

0.964 4.371 1.029 0.000 0.000 65.000 25.000 0.000 0.000 10.000 

0.973 4.371 1.029 0.000 0.000 65.000 25.000 0.000 0.000 10.000 

0.981 4.371 1.029 0.000 0.000 65.000 25.000 0.000 0.000 10.000 

0.990 4.371 1.029 0.000 0.000 65.000 25.000 0.000 0.000 10.000 

0.999 4.371 1.029 0.000 0.000 65.000 25.000 0.000 0.000 10.000 
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3.2. Application of mean-semivariance efficient 

frontier. In this section, we illustrate our computa-

tion of the semivariance matrix. The first step is to 

derive the beta coefficients of various assets. We 

calculate the variance and covariance matrix of dif-

ferent asset types. Results are shown in Table 3.  

Table 3. Covariance matrix of assets 

 
Government bond Muni bond 

High yield 
bond 

Real estate MBS 
Investment grade 

bond 
Large cap 

stock 

Government bond 0.031% 0.040% 0.048% 0.037% 0.039% 0.026% -0.010% 

Muni bond 0.040% 0.123% 0.074% 0.070% 0.063% 0.039% -0.010% 

High yield bond 0.048% 0.074% 0.335% 0.107% 0.077% 0.047% 0.002%

Real estate 0.037% 0.070% 0.107% 0.193% 0.091% 0.026% 0.029%

MBS 0.039% 0.063% 0.077% 0.091% 0.112% 0.033% 0.022%

Investment grade bond 0.026% 0.039% 0.047% 0.026% 0.033% 0.032% -0.007% 

Large cap stock -0.010% -0.010% 0.002% 0.029% 0.022% -0.007% 0.099%

Std. dev 1.775% 3.511% 5.789% 4.395% 3.351% 1.799% 3.141%

Skewness -0.782 -1.374 -0.001 -2.147 -1.133 -0.774 -0.521 

E(M) 1.049% 

Var(M) 0.104% 

Cov(j,M) -0.012% -0.010% -0.003% 0.027% 0.020% -0.008% 0.101%

Beta -0.111 -0.098 -0.027 0.262 0.197 -0.072 0.972 

V(>) 0.046% 
 

The second step is to compute the market mean and 

variance values as follows: 

1

1 T

M t
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E vwretd
T

,                                        (15) 
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,                           (16) 

where vwretd is the value-weighted-return of the 

market. The covariance of different assets with the 

market return is calculated as follows: 

~
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.   (17) 

Then beta is calculated according to equation (18): 

2

( , )
j

M

Cov j M
.                                        (18) 

The third step is to calculate the market portfolio’s 

semivariance above the mean return: 

~
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.                            (19) 

The results of equations (15)-(19) are shown in Table 3.  

The fourth step is to calculate the required semiva-

riance matrix. Alternatively, the semivariance ma-

trix can also be calculated as a result of the follow-

ing matrix: 

T

nnnnnn VCovV 11)(())( ,  (20) 

where: 
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n n .                                          (22) 

The result of the semivariance matrix is presented in 

Table 4.  

Table 4. Downside semivariance matrix V (<) 

 Government 
bond 

Muni bond 
High yield 

bond 
Real estate MBS 

Investment 
grade bond 

Large cap 
stock 

Government bond 0.031% 0.039% 0.048% 0.038% 0.040% 0.026% -0.005% 

Muni bond 0.039% 0.123% 0.073% 0.071% 0.064% 0.039% -0.006% 

High yield bond 0.048% 0.073% 0.335% 0.107% 0.078% 0.047% 0.003% 

Real estate 0.038% 0.071% 0.107% 0.190% 0.089% 0.027% 0.018% 

MBS 0.040% 0.064% 0.078% 0.089% 0.111% 0.033% 0.014% 

Investment grade bond 0.026% 0.039% 0.047% 0.027% 0.033% 0.032% -0.003% 

Large cap stock -0.005% -0.006% 0.003% 0.018% 0.014% -0.003% 0.055% 

Std. dev. of semivariance 1.759% 3.504% 5.789% 4.359% 3.324% 1.792% 2.349% 

Std. dev of variance 1.775% 3.511% 5.789% 4.395% 3.351% 1.799% 3.141% 
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The optimal asset allocation results constructed 

from the semivariance model are reported in Ta-

ble 5. Comparing the results of the traditional 

variance model (see Table 2) and the semiva-

riance model (see Table 5), we show that the in-

vestor can generate almost the same portfolio 

returns as the traditional variance investor while 

lowering the downside risk below the level of that 

of the variance investor. For example, when the 

risk free rate c is 0.7614%, a semivariance inves-

tor will have a portfolio return of 0.931% as com-

pared to a variance investor’s return of 0.931%; 

while at the same time the semivariance investor 

insurers will have a lower downside risk of 

1.891%, as compared to 1.910% for the variance 

investor.  

Table 5. Results of the mean-semivariance efficient frontier 

c 
Portfolio 

semi-dev. 

Portfolio 
expected 
returns 

Govern-
ment bond 

Muni bond 
High yeld 

bond 
Real estate MBS 

Investment 
grade bond 

Large cap 
stocks 

0.744 1.879 0.930 0.000 0.000 0.000 25.000 0.000 65.000 10.000 

0.753 1.879 0.930 0.000 0.000 0.000 25.000 0.000 65.000 10.000 

0.761 1.891 0.931 0.000 0.000 0.724 25.000 0.000 64.276 10.000 

0.770 1.904 0.932 0.000 0.000 1.443 25.000 0.000 63.557 10.000 

0.779 1.919 0.933 0.000 0.000 2.256 25.000 0.000 62.744 10.000 

0.788 1.937 0.935 0.000 0.000 3.183 25.000 0.000 61.817 10.000 

0.797 1.972 0.937 0.000 0.000 4.193 25.000 1.457 59.350 10.000 

0.805 2.019 0.941 0.000 0.000 5.377 25.000 3.444 56.179 10.000 

0.814 2.080 0.945 0.000 0.000 6.799 25.000 5.831 52.370 10.000 

0.823 2.159 0.949 0.000 0.000 8.539 25.000 8.751 47.710 10.000 

0.832 2.267 0.955 0.000 0.000 10.744 25.000 12.473 41.784 10.000 

0.841 2.340 0.959 0.000 0.000 13.262 25.000 12.500 39.238 10.000 

0.849 2.463 0.965 0.000 2.238 16.537 25.000 12.500 33.726 10.000 

0.858 2.643 0.973 0.000 5.811 20.870 25.000 12.500 25.819 10.000 

0.867 2.911 0.985 0.000 10.731 26.838 25.000 12.500 14.931 10.000 

0.876 3.311 1.000 0.000 17.326 35.174 25.000 12.500 0.000 10.000 

0.885 3.409 1.004 0.000 14.069 38.431 25.000 12.500 0.000 10.000 

0.893 3.538 1.008 0.000 10.035 42.465 25.000 12.500 0.000 10.000 

0.902 3.716 1.014 0.000 4.908 47.592 25.000 12.500 0.000 10.000 

0.911 3.898 1.019 0.000 0.000 52.500 25.000 12.500 0.000 10.000 

0.920 3.898 1.019 0.000 0.000 52.500 25.000 12.500 0.000 10.000 

0.929 3.898 1.019 0.000 0.000 52.500 25.000 12.500 0.000 10.000 

0.937 4.156 1.024 0.000 0.000 59.666 25.000 5.334 0.000 10.000 

0.946 4.360 1.029 0.000 0.000 65.000 25.000 0.000 0.000 10.000 

0.955 4.360 1.029 0.000 0.000 65.000 25.000 0.000 0.000 10.000 

0.964 4.360 1.029 0.000 0.000 65.000 25.000 0.000 0.000 10.000 

0.973 4.360 1.029 0.000 0.000 65.000 25.000 0.000 0.000 10.000 

0.981 4.360 1.029 0.000 0.000 65.000 25.000 0.000 0.000 10.000 

0.990 4.360 1.029 0.000 0.000 65.000 25.000 0.000 0.000 10.000 

0.999 4.360 1.029 0.000 0.000 65.000 25.000 0.000 0.000 10.000 
 

Figure 1 shows the graph of the two efficient 

frontiers, in which the semivariance efficient 

frontier is moving outward to the left of the va-

riance efficient frontier. That is, the efficient fron-

tier based on mean-semivariance framework has 

higher return-risk tradeoff than the efficient fron-

tier based on mean-variance framework. Although 

the improvement from the mean-variance efficient 

frontier to the mean-semivariance efficient fron-

tier is not substantial, this does not necessarily 

indicate that the real differences between the va-

riance-oriented investors and the semivariance-

oriented investors are negligible. If the optimizing 

process is fed with more assets instead of just 

seven ETF index funds, the ultimate difference 

between the two frontiers might be much more 

obvious. Moreover, the inter-correlations between 

asset classes are much higher than those of indi-

vidual securities, and the skewness may be re-

duced through diversification. 
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Fig. 1. Mean-variance and mean-semivariance efficient frontiers 

In terms of asset weight allocation, we can observe 

some similarities as well as differences between the 

Markowitz mean-variance model and the mean-

semivariance model. As risk-free rate goes higher, 

the real estate and common stock investments al-

ways stay at their highest investment constraints, 

25% and 10% respectively, while at the same time, 

each model allocates a zero percentage to govern-

ment bonds (see Table 2 and Table 5). For the mu-

nicipal bond allocation, neither model allocates any 

capital until risk-free rate goes higher. However, the 

semivariance model allocates slightly less than the 

variance model when the risk-free rate is below 

0.867%. When the risk-free rate is above 0.867%, 

the semivariance model allocates more than the 

variance model, but both models suggest dropping 

this asset from the portfolio after the risk-free rate 

goes above 0.911%.  For the high yield bond alloca-

tion, as the risk-free rate goes up, the optimal asset 

allocation in this investment category goes up, but 

the semivariance model always indicates to maintain 

a lower investment ratio in this investment category 

than does the variance model. For the Mortgage-

Backed Securities (MBS), the investment alloca-

tions suggested by both models are all increasing 

initially, but dropping dramatically to a zero percen-

tage after the risk-free rate rises above a level of 

0.946%. Interestingly, for this investment catego-

ry, the semivariance model suggests a much higher 

allocation to the MBS than does the variance model. 

For the investment grade corporate bond invest-

ment, things get a little twisted. The allocation 

suggested by the semivariance model starts out 

lower than that of the variance model, but the 

allocation of the semivariance model soon ex-

ceeds that of the variance model as the risk-free 

rate increases. In the end, both models allocate a 

zero percentage to this asset category. 

The differences in the asset allocation strategy sug-
gested by the two models may be partly explained by 
each asset’s standard deviation and semi-deviation of 
different asset returns. Municipal bonds and high 
yield bonds both have relatively higher standard 
deviation and standard semivariance than those of 
MBS and investment grade corporate bonds. The 
difference between the standard semivariance and 
the standard deviation of the municipal bonds and 
high yield bonds are smaller than that between the 
MBS and investment grade corporate bonds. So the 
semivariance model suggests a smaller asset alloca-
tion in these two assets than what the variance mod-
el suggests.  

The relative difference in the asset allocation in the 
portfolio has practical economical implications. The 
mean-semivariance model allows investors to select a 
portfolio that can achieve an expected portfolio return 
that matches and even exceeds what the mean-variance 
model can offer while keeping the risk level at the 
minimum variance and the semivariance level. These 
results are consistent with Ballestero’s findings.  

Conclusion 

In general, Markowitz’s mean-variance model has 
been one of the most commonly used methods in 
real-world portfolio management and asset alloca-
tion. However, it has received criticisms for its strict 
mathematical assumption that the returns of the 
assets in the portfolio are normally distributed. 
When portfolio is composed of assets with skewed 
returns, the results of the mean-variance model will 
be ineffective. Moreover, variance which is used as 
a risk measurement in the mean-variance framework 
treats both the returns above and below the mean 
return equally. Thus, variance as a risk measurement 
tends to give a misleading estimation for the down-
side risk which investors weigh more heavily than 
the upside volatility of security returns.  
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Research on the downside risk, including the semi-

variance below the mean value or certain target 

value, has undergone for many years. The difficul-

ties in the calculation of the downside risk measure 

have made the downside risk optimization not as 

popular as the mean-variance optimization algo-

rithm. However, the introduction of a strictly de-

rived method has simplified the process: the sym-

metric co-semivariance matrix is derived from the 

empirical validity of Sharpe’s beta regression equa-

tion. Few prior studies have devoted to empirically 

testing these two models and compare their efficient 

frontiers. In this paper, we empirically test these 

two models using real world data and compare the 

two efficient frontiers in investment portfolio and 

asset allocation. 

The efficient frontiers comparison seems to indicate 

that the mean-semivariance framework could pro-

vide clearer indications in terms of asset allocations 

that lead to an optimal portfolio that not only 

matches if not exceeds those expected returns from 

the traditional mean-variance framework, but also 

lowers downside risk. In other words, the results 

indicate that the mean-semivariance model could 

provide investors with asset allocation strategy that 

minimizes asset allocation not only in those assets 

with higher variance but also in those assets with 

higher semivariance in particular and with higher 

correlation with each other than with other assets. 

By constructing a portfolio as suggested by the 

mean-semivariance model, investors can simulta-

neously minimize the downside risk and achieve 

similar or better expected returns. In contrast, the 

mean-variance model tends to lead to a portfolio that 

has limited upside gain and higher downside risk.  

Our findings of the semivariance model have prac-

tical implications for both individual investors and 

institutional investors for asset allocation and port-

folio optimization while managing their downside 

risk exposure. It is especially important for insurance 

and banking sectors, the industries that have a higher 

risk aversion for downside risk. Insurance companies 

and commercial banks in the United States, for ex-

ample, are required by regulators to maintain a cer-

tain level of capital, which is determined by the level 

of the risk in their invested assets. While insurance 

companies and banks seek to reduce the required 

capital to a minimum level, they are very concerned 

about minimizing the downside risk while maintain-

ing a certain level of return on investment. The 

mean-semivariance model could be very instrumen-

tal to these companies for their risk management. 

Moreover, the mean-semivariance model allows 

portfolio managers to have a clear definition of 

risk that combines the objectives and constraints 

of the entire investment portfolio. 
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