
“The importance of second-order interactions in a forest choice experiment. A
partial log-likelihood analysis”

AUTHORS

Marek Giergiczny

Pere Riera

Joan Mogas

Pierre-Alexandre Mahieu

ARTICLE INFO

Marek Giergiczny, Pere Riera, Joan Mogas and Pierre-Alexandre Mahieu (2011).

The importance of second-order interactions in a forest choice experiment. A

partial log-likelihood analysis. Environmental Economics, 2(2)

RELEASED ON Friday, 22 July 2011

JOURNAL "Environmental Economics"

FOUNDER LLC “Consulting Publishing Company “Business Perspectives”

NUMBER OF REFERENCES

0

NUMBER OF FIGURES

0

NUMBER OF TABLES

0

© The author(s) 2024. This publication is an open access article.

businessperspectives.org



Environmental Economics, Volume 2, Issue 2, 2011 

 59

Marek Giergiczny (Poland), Pere Riera (Spain), Joan Mogas (Spain), Pierre-Alexandre Mahieu (France) 

The importance of second-order interactions in a forest choice  

experiment. A partial log-likelihood analysis 

Abstract 

Although it is known that main effects models could misrepresent individuals’ preferences in choice experiment appli-

cations, a review of major journal articles suggests that the current practice is to obviate the second-order interaction 

designs. This article presents a partial log-likelihood analysis of a forest valuation study where interactions are found to 

be more important than some of the main effects. 
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Introduction  

Environmental goods are often valued by means of 

choice modeling techniques. The most widely used 

variant of these techniques is probably the pair-wise 

choice experiment (CE). This typically involves a 

survey in which respondents are faced with one or 

several choice sets, each containing three alterna-

tives, including the business-as-usual (BAU). Each 

alternative involves a bid amount to be paid, which 

generally equals zero for the BAU, as well as the 

level of each relevant non-monetary attribute of the 

good. The respondent’s task is to state his/her pre-

ferred option (Hensher et al., 2005). This setting is 

consistent with the random utility maximization 

model (RUM) and several econometric treatments 

have been developed, as it will be explained in the 

methodology section. 

The indirect utility function (IUF) of the participants 

can take several forms. Among other things, the prac-

titioner has to decide whether to include interaction 

variables in the IUF. There are two main types of 

interactions: between attributes of the good, and be-

tween attributes (or alternative specific constants) and 

socio-demographic characteristics. The latter is often 

interpreted as a way of dealing with systematic taste 

variations. The former is usually regarded as indi-

viduals perceiving attributes as complements or sub-

stitutes. This paper focuses on this form of non-

linearity in the utility function specification. 

A current practice in non-market valuation is to 

assume that all two-way or higher order interaction 

terms among attributes in the IUF are equal to zero. 

Consequently, most authors focus on main effect 

designs and discard designs that allow for the estima-

tion of interactions. A review from 2009 of seven 

major journals in which environmental valuation 

estimations are published – Ecological Economics, 

Environmental and Resource Economics, Journal of 
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Choice Modelling, Journal of Environmental Eco-

nomics and Management, Journal of Forest Econom-

ics, Land Economics, and Resource and Energy 

Economics – rendered 36 papers reporting choice 

modeling applications. Six articles specified that 

their design enabled the estimation of two-way in-

teractions (Alvarez-Farizo et al., 2009, p. 791; Bate-

man and Munro, 2009, p. 125; Boyle and Ozdemir, 

2009, p. 253; Chattopadhyay, 2009, p. 2837; Hoyos 

et al., 2009, p. 2375). Of these 6 papers, only Bate-

man and Munro (2009) report testing some of the two-

way interactions between attributes: “we experimented 

with a number of specifications, including nonlinear 

interactions between the attributes” (p. 127). 

A reason for this lack of practical assessment of sec-

ond-order effects in environmental valuation may be 

that it demands more complex designs than for main 

effects only. Another possible reason is the belief 

that the importance of two-way interactions might 

be rather modest compared to the main effects. 

Two-way interactions have been said to explain 

about 6%-10% of the data variance (Louviere, 1988; 

Louviere et al., 2000), based on research carried by 

Dawes and Corrigan (1974) referring to linear mod-

els. However, discrete choice models are highly 

non-linear and it is unclear whether two-way inter-

actions ought to be discarded. 

Another belief is that a large sample size may be a 

substitute for a poor experimental design. Lusk and 

Norwood (2005) tested the effect of several experi-

mental designs on valuation estimates in a Monte-

Carlo simulation and found that under certain condi-

tions, the estimated Willingness to Pay (WTP) from 

the main effects design is not statistically different 

from the true WTP even if nonlinear effects are 

present. However, the study raised some controver-

sies. For instance, Carson et al. (2009) criticized the 

choice of IUF parameters. The interaction terms 

considered by Lusk and Norwood (2005) were five 

to ten times smaller than the main effects parame-

ters, which resulted in a nearly linear IUF. 
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The significance of two-way interactions in forest 

valuation had previously been highlighted by Mogas 

et al. (2006). This paper analyzes a subset of data 

from the same valuation exercise reported by Mogas 

et al. (2006), but departs from it by using a different 

econometric model and by quantifying and discuss-

ing the relative explanatory power of second order 

effects based on a partial log-likelihood analysis 

(Lancsar et al., 2007). The procedure quantifies the 

contribution of each attribute and two-way interaction 

to the log-likelihood (LL) value of the model estima-

tion, thus allowing the comparative analysis. The 

remainder of the paper is organized as follows. The 

next Section deals with some issues related to design-

ing stated preference experiments. It is followed by a 

methodology section and a description of the field 

experiment. It concludes with the results, including 

some discussions, and conclusions. The overall in-

tend of the paper is to discuss the importance of sec-

ond-order interactions, and consequently the discus-

sion and conclusions focus on the methodology rather 

than the policy implications of the case study. 

1. Design 

A number of significant advances have taken place 
in the field of experimental design in recent years. 
Orthogonality is no longer perceived as a require-
ment for a “good” experimental design by some 
researchers (Ferrins and Scarpa, 2007; Rose and 
Bliemer, 2008). As mentioned by Rose and Bliemer 
(2008), the experimental design literature was ori-
ented to linear models. In such models, orthogonal-
ity of data is deemed important as it ensures that 
linear regression models do not suffer from multi-
collinearity. Orthogonal designs produce zero off- 
diagonals in the variance-covariance matrix, thus 
ensuring that the parameter estimates are uncon-
founded with one another. However, it does not 
fully apply to discrete choice models, which are 
non-linear (Train, 2003). Bliemer and Rose (2005) 
show that orthogonal designs are only efficient un-
der the assumption that all parameters are equal to 
zero (i.e., all attributes in the design are likely to not 
influence the choice decisions observed) and the 
alternatives are unlabelled. 

Efficient designs are now frequently used. This type 
of design supposes some prior knowledge of the 
parameters of the IUF. Some researchers consider 
the zero priors null hypothesis (e.g., Street et al., 
2005; Burgess and Street, 2003, Street and Burgess, 
2004; Street et al., 2001), while others assume some 
prior knowledge of the parameters (e.g., Huber and 
Swerina, 1996; Kanninen, 2002; Carlsson and MAr-
tinsson, 2003; Bliemer and Rose, 2006; Ferrini and 
Scarpa, 2007; Bliemer et al., 2009). Prior knowl-
edge on the parameters can be used to construct the 

so-called D-efficient designs. When doing so, the D-
error, which is related to the variance covariance 
matrix, is minimized. 

Another advance in constructing experiments is 

related to specific experimental designs for econo-

metric models dealing with actual collected data – 

such as when some of the requested choices are 

missing. Sandor and Wedel (2002; 2005) addressed 

preference heterogeneity by generating experimental 

designs specifically for mixed logit models. Ferrini 

and Scarpa (2007) extended the literature on design-

ing stated choice experiments by generating experi-

mental designs assuming an error components 

model structure. Bliemer and Rose (2010) generated 

designs that are appropriate for a panel formulation 

of the mixed logit model. 

Despite the recent advances in experimental design, 

we decided to construct two orthogonal designs: a 

main effect design and a two-way interactions de-

sign. The main reason for this was to assess the rela-

tive importance of two-way interactions compared 

to main effects by means of a partial log-likelihood 

analysis, a statistical approach that requires an or-

thogonal design (Lancsar et al., 2007). 

Yu et al. (2006) showed that when interaction influ-

ences choices, interaction designs perform better 

than main effect designs in terms of prediction accu-

racy. They also conducted a sensitivity analysis of 

the prediction accuracy when wrong priors for two-

way interactions were used. As expected, better 

prior information yields higher accuracy. They 

showed that constructing an interaction design and 

specifying an interaction model is the most advis-

able procedure even when completely wrong priors 

are defined (Yu et al., 2006). The orthogonal design 

for interactions used in our study can be regarded as 

an efficient one in which wrong priors are assumed 

and according to findings by Yu et al. (2006), 

greater accuracy should be achieved using an inter-

action design than a main effect design. 

The valuation exercise estimates the impact of alter-
native afforestation programs on non-market forest 
values. The afforestation program was assumed to 
take place in Catalonia, a region in the Northeast of 
Spain, which has 1.3 million ha of forests, account-
ing for circa 40% of its total area. Pine is the pre-
dominant species, accounting for half of the popula-
tion, with holm oak being the next most important 
specie, covering some 10% of the forest land (Min-
isterio de Ambiente, 1996). 

The questionnaire contains three parts. The first part 

described some positive and negative effects of the 

afforestation program to the respondent. The pro-

gram would result in an increase in the forest cover-
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age from the current 40% of the Catalonian area to 

50%. The planting was to take place in marginal 

agricultural land. The central part of the question-

naire contained the CE exercise. The final part in-

cluded some debriefing questions and questions 

related to the socio-demographic characteristics of 

the respondent. 

The attributes and their levels were set in collaboration 

with policymakers and forest researchers, and adjusted 

after focus groups and a pre-test of the survey. Table 1 

shows the attributes and levels finally used in the ques-

tionnaire. The payment vehicle was a compulsory 

annual contribution from Catalan residents to a fund 

exclusively dedicated to the afforestation program. 

Table 1. Attributes and levels used in the choice experiment exercise 

Attribute Description Level 

Picnic 
Picnicking allowed in the new forests 
(BAU = No) 

Yes 
No 

Drive  
Car driving allowed in the new forests 
(BAU = No) 

Yes 
No 

Mushroom 
Picking mushrooms allowed in the new forests 
(BAU = No) 

Yes 
No 

CO2 
CO2 sequestered annually by the new forests. Equivalent to the pollution produced annually by a city of … 
(BAU = 0) 

300,000 people 
400,000 people 
500,000 people 
600,000 people 

Erosion 
Number of years the productivity of the soil will remain 
(BAU = 0) 

300 years 
500 years 
700 years 
900 years 

Cost 
The afforestation cost per person and year (1999 values) 
(BAU = 0) 

5 € 
10 € 
15 € 
20 € 

 

The questionnaire was administered to a sample of 
Catalan residents. Face-to-face interviews were 
conducted in respondents’ homes. Two versions of 
the CE questionnaire were randomly assigned to 
two sub-samples of 400 individuals each. The loca-
tions of the survey were randomly drawn for each 
subsample. Quotas were used in order for the sam-
ples to be representative of the general population in 
terms of location, age and gender. The average re-
sponse rate in the CE was 95%. 

Two designs were constructed. The first accounted 
for main effects only and resulted in 16 pair-wise 
comparisons of afforestation scenarios, which were 
randomly blocked to 4 different versions, each of 
which had 4 choice sets of two generic (unlabeled) 
afforestation alternatives. BAU was also included in 
each choice set. In each choice set, respondents 
were thus asked for their preferred choice between 
BAU and the two alternative afforestation scenarios. 
The D-error of the main effect design (assuming all 
parameters are equal to zero) equals 0.52. 

The second design allowed the estimation of all 

main effects and two-way attribute interactions

between non-monetary attributes. It contained 64 

scenarios. The experiment was blocked into 16 

versions of four choice sets. Each version was 

displayed to an equal number of respondents to 

obtain an orthogonal data set (given that all 

choice sets are completed). The D-error of the 

interaction design (assuming all parameters to be 

zero) equals 0.15. 

Ex-post statistics were produced to explore the effi-

ciency of the designs. The minimum sample size 

requirements to obtain statistically significant coeffi-

cients (at 0.05 level) and WTP estimates were calcu-

lated. It was assumed that the estimated parameters 

were true. The details of the calculation of sample 

size requirements are available in Scarpa and Rose 

(2008) and Bliemer and Rose (2005). Efficiency 

measures were calculated with Ngene software and 

the results are reported in Tables 2 and 3. The neces-

sary sample size for most attributes is smaller than 

the sample size used (1,600 observations). Given the 

level of efficiency of the design, reliable comparison 

of the WTP obtained from the main and interaction 

effect designs is therefore possible. 

Table 2. Minimum design replication requirements by attribute for interaction design – MNL model 

 Picnic Drive Mushroom CO2 Erosion Picnic×Drive Mushroom×Drive Cost 

B 4.41 20.30 1.75 14.86 8.39 15.53 3.79 1.65 

WTP 5.17 23.35 2.72 15.51 8.29 17.07 4.98  
 

Notes: *The interaction design contained 64 scenarios. 
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Table 3. Minimum design replication requirements by attribute for main effect design – MNL model
*
 

 Picnic Drive Mushroom CO2 Erosion Cost 

B 13.12 3.93 29.06 9.62 4.31 20.69 

WTP 6.71 20.16 52.62 24.75 17.05  
 

Notes: *The main effect design contained 16 scenarios. 
 

2. Method  

In a CE exercise individuals are asked to identify 
their preferred choice i from among a given set of J 

alternatives. The data analysis follows a RUM 
(McFadden, 1974). Under RUM, it is assumed that 
the observed choice from individual n is the one she 
expected to provide her with the highest utility. Her 

utility function, niU , can be decomposed into a 

systematic part, Vni , and a stochastic part, 

ni , ninini VU . 

The probability Pni that individual n chooses alterna-

tive i instead of another alternative j of the choice set is 

)( ijVVPrP njnjninini . 

If nj  is assumed to be an independently and identi-

cally distributed extreme value type 1, this probabil-

ity has a closed form expression: 

j

x

x

ni
nj

ni

e

e
P ,                          (1) 

where x is a vector of variables which may or may 

not include interaction terms and  a vector of pa-

rameters. Equation (1) is often referred to as a logit 

choice probability function.  

The standard multinomial logit model (MNL) has 

some limitations, as listed by Train (2003): 

1. It exhibits a property of independence from 

irrelevant alternatives. 

2. MNL can represent only the systematic taste 

variation but not random taste variations. 

3. It cannot handle situations where the unob-

served part of the utility function is correlated 

over time. 

The mixed logit model can be considered to deal 

with these limitations. Mixed logit probabilities can 

be expressed as the integrals of standard logit prob-

abilities over a density of parameters. As explained 

in Train (2003), a mixed logit model is a model in 

which choice probabilities take the form 

,),( db
njn

nin

x'

x'

ni
e

e
P

j

 

where 

j

x'

x'

njn

nin

e

e
 is a standard logit formula, 

)( b, is the density of the random coefficients 

with mean b and covariance . For example, the 

logit expression in equation (1) can be treated as a 

special case of mixed logit with  being fixed.  

The BAU option in a choice set is usually experi-

enced and can cause respondents to consider it in a 

systematically different manner from the hypotheti-

cal program alternatives. As a result, there is more 

likely to be a correlation between the utility from 

the experimentally designed hypothetical alterna-

tives than with the utility associated to the status-

quo alternative. This may be captured by a specifica-

tion with additional errors accounting for this differ-

ence in the correlation across utilities (Campbell et 

al., 2008). Correlation is a consequence of sharing 

this extra error component, which is absent from the 

BAU alternative. Empirical evidence supports the 

BAU bias (see, for example, Kontoleon and Yabe, 

2003; Lehtonen et al., 2003; Scarpa et al., 2005) and 

possible explanations to account for it have been 

proposed in the literature (Samuelson and Zeck-

hauser, 1988; Haijer et al., 2001). The mixed logit 

with an error component structure has been used to 

account for the correlation in unexplained part of 

utility between the program alternatives. This model 

specification allows for different patterns of correla-

tions between utilities implying change and those 

referring to BAU (Brownstone and Train, 1999). 

The unobserved factors in MNL that affect respon-

dents are assumed to be independent of the repeated 

choices, which may be considered unrealistic in the 

CE exercises where respondents usually make more 

than one choice. There might be some unobserved 

factors that are constant over the choices made by 

the same individual facing several choice sets, and 

unobserved parts of the utilities over the choices 

may consequently be correlated. Mixed logit models 

can account for dependence across repeated choices 

by the same respondent by specifying a panel ver-

sion of the model, which overcomes the MNL limi-

tation (3) mentioned above. Conditional on , the 

probability that individual n makes a sequence of T 

choices is the product of logit formulas, as in 
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T

t
j

x

x

ni
njtn

nitn

e

e
P

1

, 

where t denotes the sequence of choices made by 

the same respondent. 

Since n is not known, the unconditional probability is 

given by the integral over all possible values of n, i.e.,  

,)(
1

db,
e

e
P

T

t
j

x

x

ni
njtn

nitn

                 (2) 

with ),( b  being the density of a random pa-

rameter with mean b and covariance matrix . 

3. Results and discussion 

An MNL model was estimated in the first step and a 
panel version of the error components random pa-
rameter logit (RPL) model was used in the second 
step. Since the integral in equation (2) cannot be 
evaluated analytically, the estimation of the prob-
abilities has to rely on a simulation method (Train, 
1999). A simulated maximum likelihood estimator 
with Halton draws was used. In total, 500 Halton 
draws were generated in each run, producing an 
approximation similar to 5,000 pseudo-random 
draws. The random parameters were assumed to be 
independent. In the first run, we let all attribute pa-
rameters be normally distributed, except for the 

cost, which was fixed. In the final models, only 
parameters that have standard deviations significant 
at the 5% level were assumed to be random. All 
models included error components that combined 
the afforestation alternatives, in addition to random 
parameters. The presence of the error components 
demonstrates that two afforestation alternatives 
share some characteristics that are not captured by 
the attributes included in the utility functions on 
which the data were modeled. 

Two IUF forms were fitted to both datasets – inter-

action and main effects designs. The combination 

of two different designs with two IUFs and two 

models (MNL and RPL) yields 8 different models, 

for which the estimates are shown in Tables 4 

(MNL) and 5 (RPL). The nonlinear effects in CO2 

and Erosion were tested against a linear specifica-

tion. Since the change in the LL value due to im-

posing the restriction on equal slopes turned out to 

be statistically not significant (which holds for all 

specifications and models), a linear specification 

for CO2 and Erosion was assumed in the final 

model. Similarly, restricting the alternative specific 

constants (ASCs) so that they were all equal did 

not have a significant impact on the fit of the mod-

els. The parameters of the utility function were 

estimated using NLOGIT 4.0 statistical software. 

The results based on the interaction design are 

discussed in Section 3.1, and they are compared 

with the results based on the main effect design in 

Section 3.2.  

Table 4. MNL results 

 Model 1 Model 2 Model 3 Model 4 

 
Interaction design 

Interaction IUF 
Main effect design 

Interaction IUF 
Interaction design 
Main effect IUF 

Main effect design 
Main effect IUF 

Picnic 
0.453*** 
(4.398) 

.173 
(1.311) 

0.286*** 
(4.051) 

0.157* 
(1.858) 

Mushroom 
0.780*** 
(7.027) 

1.016*** 
(6.233) 

0.393*** 
(5.084) 

0.473*** 
(6.191) 

Drive 
-0.264** 
(-2.047) 

-0.147 
(-0.855) 

-0.897*** 
(-5.940) 

-0.813*** 
(-11.061) 

CO2 
0.088** 
(2.131) 

0.124*** 
(2.967) 

0.080*** 
(2.867) 

0.180*** 
(4.522) 

Erosion 
0.108*** 
(2.948) 

0.088** 
(1.960) 

0.109*** 
(3.323) 

0.119*** 
(3.099) 

Cost 
-0.269*** 
(-7.193) 

-0.251*** 
(-19.609) 

-0.267*** 
(-7.216) 

-0.451*** 
(-10.022) 

Picnic×Drive 
-0.384** 
(-2.400) 

-0.148 
 (-0.722) 

  

Mushroom×Drive 
-0.808*** 
(-6.623) 

-1.155*** 
(-4.170) 

  

ASC 
0.634*** 
(3.938) 

-0.302 
(-1.405) 

0.854*** 
(10.118) 

0.858*** 
(5.018) 

LL Full model -1622.69 -1572.13 -1638.93 -1585.27 

LL constant only -1736.44 -1722.04 -1736.44 -1722.04 

2 0.067 0.087 0.057 0.081 

N 1600 1600 1600 1600 
 

Notes: t-statistic is in brackets; ***, ** and * refer to statistically significant at 1%, 5% and 10% levels, respectively. 
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Table 5. RPL results 

 Model 5 Model 6 Model 7 Model 8 

 Interaction design 
Interaction IUF 

Main effect design 
 nteraction IUF 

Interaction design 
Main effect IUF 

Main effect design 
Main effect IUF 

Picnic 
0.495*** 
(4.091) 

0.671*** 
(3.901) 

0.120 
(0.828) 

0.525*** 
(2.692) 

0.297*** 
(3.379) 

0.720*** 
(4.472) 

0.106 
(1.140) 

0.477*** 
(2.385) 

Mushroom 
0.875*** 
(6.629) 

0.731*** 
(3.951) 

1.151*** 
(6.430) 

0.461** 
(2.067) 

0.447*** 
(4.796) 

0.666*** 
(3.469) 

0.516*** 
6.143) 

0.392** 
(2.096) 

Drive 
-0.341** 
(-2.229) 

0.516** 
(2.205) 

-0.131 
(-0.728) 

 
-1.004*** 
(-9.654) 

0.526** 
(2.307) 

-0.864*** 
(-10.524) 

 

Erosion 
0.106*** 
(2.812) 

 
0.098* 
(1.943) 

 
0.097*** 
(2.640) 

 
0.148*** 
(3.459) 

 

CO2 
0.144*** 
(3.881) 

 
0.153*** 
(3.485) 

 
0.149*** 
(4.027) 

 
0.223*** 
(5.259) 

 

Cost 
-0.325*** 
(-7.437) 

 
-0.057*** 
(-4.028) 

 
-0.315*** 
(-7.412) 

 
-0.515*** 
(-9.626) 

 

Picnic×Drive 
-0.467** 
(-2.420) 

 
-0.129 

(-0.571) 
     

Mushroom×Drive 
-0.915*** 
(-4.621) 

 
-1.342*** 
(-4.453) 

     

ASC 
0.961*** 
(4.854) 

 
-0.567** 
(-2.343) 

 
1.232*** 
(6.519) 

 
1.174*** 
(6.147) 

 

Error Component 
1.146*** 
(7.539) 

 
1.195*** 
(8.004) 

 
1.135*** 
(7.517) 

 
1.198*** 
(8.150) 

 

LL Full model -1580.56  -1536.71  -1597.12  -1557.94  

LL constant only -1736.44  -1722.04  -1736.44  -1722.04  

 2 0.100  0.127  0.091  0.116  

N 1600  1600  1600  1600  
 

Notes: t-statistic is in brackets; ***, ** and * refer to statistically significant at 1%, 5% and 10% levels, respectively. 

3.1. Results based on the interaction design. The 
signs of all main effects are as it has ben expected in 
all the models. In addition, all the program attributes 
are significant factors in the choice of afforestation 
scenario. All parameters, including two-way interac-
tions, are statistically significant at 0.05 level. The 
positive sign of the Picnic, Mushroom, CO2, and 
Erosion parameters suggests that afforestation pro-
grams were more likely to be chosen when picnick-
ing and picking mushrooms were permitted, the 
amount of CO2 sequestered was high, and erosion 
was postponed for longer. However, afforestation 
programs with higher costs and driving allowed were 
less likely to be chosen by the participants. 

The standard deviations of Mushroom, Picnic and 
Drive are statistically significant at 0.05 level with 
the mixed logit model for the interaction design 
data. The standard deviation of the error compo-
nents are significant (p < 0.0001) for both IUFs. 

Both interaction terms, Picnic×Drive and Pic-
nic×Mushroom, are statistically significant and are 
included in the final model. The hypothesis that 
Picnic×Drive and Picnic×Mushroom jointly equal 
0 is rejected, with p < 0.0001 in both MNL and 
RPL models. 

The coefficients for Picnic×Drive and Picnic×Mush-

room are both negative, indicating that the utility 

derived from picnicking and mushrooming de-

pends on whether driving is permitted. The result 

is consistent with some of the statements made in 

the focus groups. A few participants complained 

about the presence of cars in the new forests, and 

about the current number of off-road vehicles in 

the existing forests. 

3.1.1. Partial log-likelihood analysis. Based on 

Lancsar et al. (2007), a partial log-likelihood 

analysis was also undertaken. The attributes were 

ranked according to their statistical importance, 

which was deemed to be their contribution to the 

LL value of the model estimation. For each attrib-

ute, the change in the LL value, their relative ef-

fect, and the cumulative effect were estimated 

after including/removing the attribute. The rela-

tive effect was calculated as the percentage 

change in the LL value. The results for the MNL 

model with interaction design and interaction IUF 

are shown in Table 6. A similar pattern holds for 

the RPL model, which is the reason the results are 

not reported here.  



Environmental Economics, Volume 2, Issue 2, 2011 

 65

Table 6. Partial log-likelihood analysis for the MNL model with interaction design and interaction IUF 

Attribute excluded Log-likelihood 
Partial effect change in 

log-likelihood 
Relative effect in 

log-likelihood 
Cumulative (%) 

None -1622.69    

Cost -1649.18 -26.49 29.20 29.20 

Mushroom -1647.62 -24.93 27.48 56.68 

Mushroom×Drive -1638.93 -16.24 17.90 74.58 

Picnic -1632.26 -9.57 10.54 85.12 

Erosion -1628.04 -5.35 5.89 91.02 

CO2 -1626.11 -3.42 3.77 94.79 

Picnic×Drive -1625.51 -2.82 3.10 97.89 

Drive -1624.60 -1.91 2.11 100.00 
 

The payment alone accounts for almost 30% of the 
LL value. Contrary to the results reported in Lancsar 
et al. (2007), two-way interactions substantially in-
crease the LL value, with the change in LL due to 
including Mushroom×Drive being larger than most of 
the main effects. The change due to including Pic-
nic×Drive is of a similar magnitude to CO2 and 
Drive. Jointly Mushroom×Drive and Picnic×Drive 
account for a 21% change in the LL value. 

3.1.2. Magnitude of the interactions and their impact 

on WTP. In order to facilitate comparison of the rela-
tive impact of the attributes on the utility, the continu-
ous variables CO2, Erosion and Cost were coded using 
the same levels (1, 2, 3, 4), taking advantage of the 
equal spacing between all the continuous variables. 
Driving, Picnic and Mushroom were dummy coded. 
The magnitude of the Mushroom×Driving parameter 
from Models 1 and 5 is larger than the magnitude of 
the Mushroom, Driving and Picnic parameters alone, 
and it is also larger than the magnitude of the highest 
level of CO2 and Erosion. 

The importance of the two-way interactions in 

this case study can also be appreciated with the 

marginal rate of substitution. When two-way in-

teractions are included in the model, the WTP for 

the attribute that enters the interaction term is not 

simply the ratio between the coefficient of this 

attribute and the cost coefficient, because the at-

tribute enters the IUF multiplicatively. For exam-

ple, when calculating the marginal utility of Driv-

ing, the utility function is partially differentiated 

with respect to Driving, including both the main 

effects and all the two-way attribute interactions 

related to driving. The WTP of Driving will thus 

depend on whether mushrooming and picnicking 

are permitted, given that the corresponding inter-

action variables are statistically significant. The 

WTP values for MNL are shown in Table 7 and 

those for RPL in Table 8. The calculations of es-

timates for attributes that enter two-way interac-

tions are conditional on whether other attributes 

are present. 

Table 7. WTP estimates based on MNL (euro of 2006) 

 Model 1 
WTP 

Model 2 
WTP 

 Model 3 
WTP 

Model 4 
WTP 

 
Interaction design 

Interaction IUF 
Main effect design 

Interaction IUF 
 Interaction design 

Main effect IUF 
Main effect design 

Main effect IUF 

Drive 
Mushroom = 0, Picnic = 0 

-4.89** 
(-2.022) 

-2.86 
(-0.938) 

Drive 
Mushroom = 1, Picnic = 0 

-19.85*** 
(-5.281) 

-25.38*** 
(-2.795) 

Drive 
Mushroom = 0,Picnic = 1 

-12.01*** 
(-5.229) 

-5.75* 
(-1.701) 

Drive 
Mushroom = 1, Picnic = 1 

-26.97*** 
(-6.158) 

-28.27*** 
(-3.083) 

Drive 
-15.92*** 
(-6.219) 

-8.95*** 
(-7.584) 

Picnic 
Drive = 0 

8.38*** 
(3.758) 

3.39 
(1.233) 

Picnic 
Drive = 1 

1.26 
(0.615) 

0.493 
(0.186) 

Picnic 
5.33*** 
(3.577) 

1.73* 
(1.696) 

Mushroom 
Drive = 0 

14.4*** 
(5.330) 

19.9*** 
(2.686) 

Mushroom 
Drive = 1 

-0.51 
(-0.243) 

-2.75 
(-0.779) 

Mushroom 
7.33*** 
(4.416) 

5.20*** 
(5.049) 

Erosion 
2.01*** 
(3.092) 

1.71** 
(2.250) 

Erosion 
2.05*** 
(3.130) 

1.32*** 
(3.474) 

CO2 
1.63** 
(2.403) 

2.41*** 
(2.975) 

CO2 
1.49*** 
(2.619) 

1.99*** 
(5.853) 

 

Note: t-statistic is in brackets. 
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Table 8. WTP estimates based on RPL (Euro of 2006) 

 Model 5 
WTP 

Model 6 
WTP 

 
Model 7 

WTP 
Model 8 

WTP 

 Interaction design 
Interaction IUF 

Main effect design 
Interaction IUF 

 Interactiondesign 
Main effect IUF 

Main effect design 
Main effect IUF 

Drive 
Mushroom = 0, Picnic = 0 

-5.28** 
(-2.181) 

-2.28 
(-0.781) 

Drive 
Mushroom = 1, Picnic = 0 

-19.45*** 
(-5.200) 

-25.71*** 
(-2.860) 

Drive 
Mushroom = 0, Picnic = 1 

-12.52*** 
(-4.244) 

-4.54 
(-1.351) 

Drive 
Mushroom = 1, Picnic = 1 

-26.69*** 
(-6.280) 

-27.97*** 
(-3.101) 

Drive 
-15.84*** 
(-6.413) 

-8.33*** 
(7.372) 

Picnic 
Drive = 0 

7.67*** 
(3.618) 

2.11 
(0.796) 

Picnic 
Drive = 1 

0.44 
(0.201) 

-0.15 
(-0.057) 

Picnic 
4.68*** 
(3.059) 

1.02 
(1.063) 

Mushroom 
Drive = 0 

13.55*** 
(5.272) 

20.10*** 
(2.757) 

Mushroom 
Drive = 1 

-0.62 
(-0.278) 

-3.32 
(-0.941) 

Mushroom 
7.05*** 
(4.325) 

4.98*** 
(4.98) 

Erosion 
2.22*** 
(3.675) 

1.71** 
(2.352) 

Erosion 
2.35*** 
(3.784) 

1.42*** 
(3.978) 

CO2 
1.64*** 
(2.555) 

2.68*** 
(3.264) 

CO2 
1.53*** 
(2.860) 

2.15*** 
(7.50) 

 

Note: t-statistic is in brackets. 
 

For example, the WTP for driving in the interac-

tion IUF Models 1 and 5 varies between a rela-

tively low negative value when Picnic and Mush-

room are excluded (-4.89 and -5.28 EUR respec-

tively), to a substantial negative value when they 

are included (-26.97 EUR and -26.69 EUR respec-

tively). This suggests that the disutility related to 

driving is relatively low, given that driving is 

permitted in areas where recreation activities are 

not available (i.e., picnicking or mushrooming). 

In other words, driving on the one hand, and 

mushrooming or picnicking on the other, are on 

average perceived as substitutes, not as comple-

ments. A similar pattern is observed for mush-

rooming and picnicking. The WTP for mushroom-

ing and picnicking are positive and relatively high 

when driving is forbidden. However, the WTP for 

both attributes becomes not statistically different 

from zero when driving is allowed. 

The choice of design may therefore have relevant 

policy implications. For example, based on the main 

effects model, it appears that people are willing to 

pay a high amount to forbid car driving in the forest. 

The WTP for driving is close to -16 EUR in Models 3 

(Table 4) and 7 (Table 5). However, the negative 

WTP associated with driving alone is relatively 

small, with the interactions specification equaling 

-4.9 EUR (Model 1) and -5.3 EUR (Model 5). There 

is therefore a relatively low average disutility associ-

ated with driving alone. 

A larger disutility related to Drive comes from the 

two-way interactions with Picnic and Mushroom. 

Since the interdependencies between Mushroom, 

Picnic and Drive are not accounted for in the main 

effects IUF, the lower value is attributed to Drive, 

Picnic and Mushroom. In other words, whenever 

Drive is included along with Picnic or Mushroom 

in the same alternative, the disutility associated 

with Drive in this setting will be higher due to the 

negative impact of the interaction effect. This will 

in turn lead to negatively biased parameters for 

Mushroom, Picnic and Drive. 

3.2. Results based on the main effect design. As 
in the previous section, two forms of IUF are as-
sumed. Even though the design is tailored for the 
main effects specification, the estimation of two-
way interactions is still possible. There are high 
correlations (> 0.7) between some interactions and 
the main effects; meaning that the identification of 
the parameters may be difficult in this case. The 
MNL results are reported in Table 4, while the 
RPL results are shown in Table 5. The standard 
errors for the main effects design and interaction 
IUF are larger than for the interaction design and 
interaction IUF. As a consequence, Picnic, Drive, 
Erosion, and Picnic×Drive, which were highly 
significant in Models 1 and 5, become insignificant 
in Models 2 and 6. There are also substantial dif-
ferences in WTP values between the two designs 
for Picnic when driving is forbidden, and for Drive 
when picnicking is allowed and mushrooming for-
bidden. The mean WTP for these attributes based 
on the main effects design lies outside the 95% 
confidence intervals calculated for the interaction 
design and model. 
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As in Section 3.1, the inclusion of interaction ef-

fects significantly influences the main effects pa-

rameter estimates. The pattern is similar to the 

results obtained from the data based on the interac-

tion design, and is therefore not discussed here. How-

ever, the statistical significance of the parameter esti-

mates and the resulting WTP estimates is lower. This 

is in line with findings reported by Yu et al. (2006). 

Conclusion 

It is current practice in choice modeling to assume 

linear in parameters IUF in both the design and 

modeling stage, probably because interaction terms 

are believed to be small or even insignificant rela-

tive to main effects (Louviere et al., 2000). How-

ever, a case study has been presented here in which 

the interaction parameters are statistically signifi-

cant and large in comparison with the main effects. 

The use of a partial log-likelihood analysis shows 

that the overall contribution of two-way interac-

tions to the LL value is 21% in this study. 

Forest policies based on the main effect results 

would be significantly different from those ac-

counting for interactions. For instance, the dis-

utility of allowing car driving in the new forests is 

more than three times higher if estimated from a 

main effects model instead of an interactions 

model, due to the fact that driving imposes a 

negative externality on other recreational activi-

ties, such as mushroom picking and picnicking. 

If other case studies find similar results, the role 

of interactions may appear more prominent. Some-

times it is difficult to identify in focus groups or in 

a pilot study whether interactions are relevant. In 

these cases, incorporating interactions into both the 

design stage and the model estimation may be a 

safe strategy to adopt. 
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