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Maria Martel (Spain), Agustín Hernández (Spain), Francisco José Vázquez Polo (Spain) 

Modeling dependence between risk profiles through the  

Farlie-Gumbel-Morgenstern family in the compound  

Poisson-Lindley risk model 

Abstract 

This paper considers the case of dependence between risk profiles in compound collective risk model, where the de-
pendence is modeled by making the prior densities of the model parameters, which belong to a Farlie-Gumbel-
Morgenstern family, and a particular way to measure departures from independence is used. The authors analyze the 
consequences of the dependence, using the Bayes premium. The paper concludes that even for a coefficient with a 
constant linear correlation the consequences of the dependence on the Bayes premium may vary considerably, in mag-
nitudes greatly superior to those found with respect to the linear correlation and the divergence. 

Keywords: Bayesian analysis, Bayes premium, Farlie-Gumbel-Morgenstern distributions, risk profile dependence. 
 

Introduction  

In actuarial risk theory, the collective risk model is 
described by a frequency distribution for the number 
of claims N and a sequence of independent and 
identically distributed random variables representing 
the size of the single claims Xi. Frequency N and 
severity Xi are assumed to be independent, condi-
tional on distribution parameters. 

One of the most usual model types consists in con-
sidering that the distribution of the variable N (pri-
mary distribution), follows a Poisson law (Goo-
vaerts and Kass, 1991) and that the secondary one, 
i.e., the severity of the claims, follows an exponen-
tial distribution (Panjer and Willmot, 1981; Sarabia 
and Guillén, 2008). Our interest is then focused in 

1= ...
N

S X X  which denotes the aggregate 
losses or the total cost over a period. 

Although the above modelization is often utilized, 
some aspects deserve special mention. Actuarial 
data often present positively skewed and overdisper-
sion. Consequently, alternative distributions to Pois-
son are sometimes required. Certainly, due to the 
popularity of the Poisson distribution (with or without 
extra zeroes) some other sampling distributions have 
been somewhat neglected in the literature. In this pa-
per, we propose a simple and applicable alternative 
distribution to model variable N, the Poisson-Lindely 
distribution (Sankaran, 1970). This distribution pro-
vides a statistical model that is more flexible for 
fitting data and which empirically fits many kinds of 
loss and/or actuarial data with a strong asymmetry 
presence (Ghitany et al., 2008) and where some other 
properties as overdispersion and zero-inflated are 
usually present in sample observations. Recently, 
Hernández-Bastida et al. (2011) derived Bayesian 
premium under the collective risk model using Pois-
son-Lindley and exponential distributions. Ghitany 
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and Al-Mutairi (2009) provided a comprehensive 
treatment of statistical behavior of the Poisson-Lindley 
distribution and its parameter estimation. 

If a random variable N follows a discrete Poisson-
Lindley distribution with parameter , its probabili-
ty density function is given by: 

2

3

( 2 )
Pr = | = ,

1

= 0,1,2,... > 0.

k

k
N k

k

                           
(1)

 

It follows immediately from equation (1) that the 
following properties hold: 

1. The moment generating function is:  

2

1 2

exp( ) 2
( ; ) =

( 1) (exp( ) 1)

t
M t

t  

.

 

2. The mean and the variance are given by: 
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3. The coefficient of variation is: 

3 21
4 6 2,

2   

and the Poisson-Lindley distribution presents over-
dispersion. 

The following example shows that the Poisson-
Lindley model is an alternative model to fit insur-
ance data. 

Example 1. The data for this example are taken 
from Ghitany and Al-Muatairi (2009) corresponding 
to the distribution of accidents to 647 women work-
ing on high explosive shells in five weeks, data that 
were previously used in Sankaran (1970). The sam-
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ple dispersion index (1.485) is slightly bigger than 
1, and sample tail index is negative (-0.33), indicat-
ing that there is overdispersion relative to Poisson 
but short tail relative to NB. Table 1 shows fits from 
the Poisson, Negative Binomial and Poisson-
Lindley models to data set. Observe that all models 
are uniparametric except the Negative Binomial, 
which is biparametric. For comparative and illustra-
tive purposes, all the usual measures, such as p-
values, log likelihood, the Akaike Information Crite-
rion (AIC) and the Bayesian Information Criterion 
(BIC) are used to compare the estimated models. As 
is well known, a model with a minimum BIC value 
is to be preferred. 

Table 1. Estimated parameters, p-value, log like- 
lihood, x2-statistic, AIC and BIC for Example 1 

  Fitting distribution (expected frquency) 

# of accidents 
Observed 
frequency 

Poisson Neg. Bin. 
Poisson-
Lindley 

0 447 406.31 445.89 439.45 

1 132 189.03 134.90 142.76 

2 42 43.97 44.00 44.96 

3 21 6.82a 14.70 13.85 

4 3 079a 4.96a 4.20a 

5+ 2 0.07a 1.69a 1.25a 

Parameters   = 0.4652  = 0.6503  = 2.729 
2

   r = 0.8651 

(d.f.)  65.01 (2) 3.27 (2) 4.86 (3) 

p-values  <1% 0.1945 0.182 

Log likelihood  617.184 592.267 592.67 

AIC  1236.37 1188.53 1187.42 

BIC  1240.84 1197.48 1191.89 

Notes: aExpected frequencies have been combined for the calcu-

lation of 
2

. 

The estimation of the parameters ’s, p’s and/or  

r’s by the maximum likelihood method is presented 
in Table 1, where numerical routines are used to 
solve the non-linear systems presented in the normal 
equations. The Mathematica® software package 
was used to code these computations. The maxi-

mum likelihood estimator ( ˆ ) for the Poisson-
Lindley model was obtained following the method 
described by Ghitany and Al-Mutairi (2009) and 
tested simultaneously by the EM algorithm from 
Karlis (2005). Sankaran’s moment estimate (i.e., 

2( 1) ( 1) 8
=

2

x x x

x
) was also obtained 

and its value is = 2.726.  Observe that the maxi-
mum likelihood estimator (MLE) and that obtained 
from the method of moments (MOM) are very 
close. In fact, the observed distribution provided by 
the Poisson-Lindley model under the MOM estima-
tor is similar to that from MLE, thus verifying San-
karan’s conjecture that the moment estimate is close 

to the MLE (Karlis, 2005). Table 1 shows that the 
Poisson-Lindley model performs very well in fitting 
the distribution, compared to other uniparametric 
models, and provides a fit as good as that of the 
biparametric Negative Binomial model. Based on 
the AIC and BIC, the PL distribution fits the data 
better than NB, and NB distribution is better than 
Poisson. Furthermore, the Poisson-Lindley model 
presented is somewhat simpler than the NB and 
therefore it might appear to be preferable as a less 
complex model, taking into account the Ockham’s 
razor principle. 

On the other hand, the computations required to 
obtain S under the different models above cited are 
difficult to perform without the independence hypo-
thesis. In the absence of this independence hypothe-
sis, it may be necessary to elicit the bidimensional 
prior distribution without any subjective meaning. 
Peters et al. (2008) proposed that this kind of inde-
pendence assumption in operational risk models 
should be investigated further. 

Using the Poisson-Lindley distribution as a primary 
distribution, the main objectives of this article are: 
(1) to carry out an easy implementable statistical 
procedure to investigate the importance of the inde-
pendence assumption; and (2) to produce an appli-
cation that involves computational aspects and a 
simulated data analysis based on this procedure. 

Certainly, in actuarial practice, the final purpose of 
the analysis is to provide a good estimate of the 
premium to be charged. In our opinion, this paper 
could be considered as a previous step in this final 
objective. We try to answer to the general questions: 
How realistic the model’s hypothesis in practice is? 
Is the choice of independence hypothesis motivated 
by mathematical tractability rather than by theoreti-
cal justification? This paper presents a particular use 
of the Farlie-Gumbel-Morgenstern (FGM) family 
classes of priors which can be used to determine 
whether there are large deviations in final insurance 
decisions when the assumption of prior indepen-
dence does not hold. 

With respect to previous studies, we address the 
problem of independence from a different stand-
points. First, we focus on the hypothesis of the in-
dependence of risk profiles as an indirect way of 
analyzing the independence between claim frequen-
cy and claim severity. Subsequently, we propose a 
model of (weak) dependence between the prior den-
sities of these risk profiles, including the case of 
independence as a particular case using the FGM 
family of distributions (Morgenstern, 1956). By 
means of these tools, it is a straightforward matter to 
study how the independence hypothesis affects ac-
tuarial decisions. By setting a measure of compari-
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son (for example, the Bayes premium), it suffices to 
compare this measure over the entire class under 
consideration with the one that would be obtained 
under independence. 

The article is organized as follows. Section 1 pro-
vides details of the statistical model proposed con-
taining the likelihood derived from the choice of a 
Poisson-Lindley count distribution and exponential 
severities, and the class of priors considered to de-
velop a Bayesian analysis. Section 1 also presents 
the derivation of the (prior) joint moments of para-
meters, including the covariance and correlation 
coefficients. In Section 2 we describe how the mod-
els react to variations in the independence of the risk 
profile priors with respect to the Bayes premium, 
and how the results obtained can be used in practice. 
Some conclusions are drawn and final comments 
made in the last section. 

1. The statistical model 

1.1. The likelihood. As commented in section 1, we 
consider that N follows a Poisson-Lindley distribu-
tion with parameter  and in order to complete our 
model we need a distributional assumption on sever-
ities. We suppose that random variables Xi, i = 
0,1,… follow an Exponential distribution of parame-
ter   0, 

,)(2
ix

i exf .0ix                    (2) 

Its moment generating function is given by 

2 ( ; ) = .M t
t

 The mean and variance, respec-

tively, for each i are then:  

1
[ ] = ,iXE  and 2

1
ar = .iXV  

We assume conditional independence between 
claim amounts and claim numbers. Then, in the 
compound collective model our interest is focused 
on the random variable “total cost or aggregate 
loss”, ,S  where its probability density function is 
defined by: 

2
=0

( | , ) = Pr( = | ) ( | ),n

n

f s N n f x

 

where Pr( = | )N n  denotes the probability that n  

claims have occurred and 2
nf  is the n-th convolu-

tion of the 2 ( | )f x  function in equation (2). 

Proposition 1. The probability density function 
(pdf) and moment generating function, respectively, 
of the random variable aggregate losses S  are given 
by respectively: 

2 5

2 3

( 1) ( 1)( 3) exp , if 0;
( | , ) = 1

( 1) ( 2), = 0.

s s s
f s

s
 

                                              (3) 

2 2 2

2

( 1) (2 3) ( 2)
( ; , ) = , > 0.

( 1)( ( 1))

t
M t t

t  

                                                               (4)

Proof. Using equations (1) and (2) the corresponding 
aggregated loss distribution (the likelihood function 
when variable S is observed) density function is ob-
tained after some straightforward calculations. Further-
more, it is obvious that for the case = 0,s  

2

3

( 2)
(0 | , ) = Pr( = 0 | ) = .

( 1)
f N

 

On the other hand, ( ; , )M t  is derived as in 
Klugman et al. (2004): 

1 2( ; , ) = (log ( ; ); ).M t M M t
        

As a consequence of the above result, the first mo-
ment (i.e., the mean) and variance of variable S are 
given as:  

2
= ,

( 1)
SE

 
2

2

2 2

2( 3 3)
= ,

(1 )
SE

3 2

2 2 2

2 7 8 2
and ar = .

( 1)
SV

 

1.2. The priors. Under a Bayesian viewpoint, the 
parameters of interest of the problem can be esti-
mated by using our state of knowledge about them. 
A natural conjugate prior for a parameter  under 
Poisson or exponential sampling is the Gamma 

( , )G  density: 

1( ) = exp( ),
( )

> 0, , > 0.c d

                         (5) 

We consider values of  such that >1. The prior 

mean and variance for  are given by =E

 

and 2
ar =V . The corresponding

 
prior mode

 

for the parameter  is 
1

Mo( ) = .  If we have 
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very little prior information concerning , then the 

selection 
1

( = 2, = )
4

 is usually satisfactory 

(Scollnik, 1995). 

In actuarial literature it is normally assumed that 
the parameters  and  are independent. Al-
though there has been significant theoretical de-
velopment of the sensitivity procedures in Baye-
sian statistics for prior independence (Lavine et 
al., 1991; Wasserman et al., 1993; Berger and 
Moreno, 1994) relevant applications have been less 
3 

forthcoming. In this paper we propose to intro-
duce some dependence between the risk profiles 

 and  through the Farlie-Gumbel-Morgenstern 
(FGM) system. The FGM family has been used 
recently in Cossette et al. (2008) as a tool to in-
troduce dependence between claim amounts and 
the interclaim time, but in the context of copula 
theory. 

The bivariate FGM system of distributions (origi-
nally introduced by Morgenstern, 1956) has a 
joint cumulative distribution function of the form 

( , ) = ( ) ( ) 1 1 ( ) 1 ( ) , | | 1,H x y F x G y F x G y                                                                (6) 

where F  and G  are the marginal cumulatives. The joint density corresponding to (6) is: 

yGxFygxfyxf 21211, .yGygxFxfygxf 1212          
(7)

Equation (7) is an easy and attractive method for 
constructing the joint distribution with specified 

marginals F and G  (or equivalently, f  and g ). 

Lai (1978) showed that the parameter  is directly 
proportional to the correlation coefficient. The use-
fulness of the system, however, is marred by the fact 
that it is restricted to describing relatively weak 
dependence. The product moment correlation coef-
ficient for all the FGM distributions with continuous 

marginals can never exceed 
1

.
3

 

Assuming that the two prior distributions are 
( , ),G:  and ( , ),G:  we proceed 

. 

now to obtain the correlation coefficient over the 
FGM family of priors in order to obtain a measure 
of dependence between risk profile. 

Observe that: 

1 2

1
= ,E E

 
                                 (8) 

where 1 = ( ,1)G:  and 

2 = ( ,1).G:   

Then, similarly to D’Este (1981) we obtain: 

1 2

( ) ( )
= 1 2 1 2 1 ,

( ) ( )

I I

B B
E E E

 

                                                 (9) 

where 

1
1

2 10
( ) =

(1 )

z
I dz

z
 and 

( ) ( 1)
( ) =

(2 1)
B  and function ( )I  satisfy the relation 

2( ) 1 (2 1)
2 1 = 2 .

( ) ( ) ( 1)

I

B
 

Therefore, from (9) we have the following: 

2( )
(2 1) (2 1)2

= 1 ,
( ) ( 1) ( ) ( 1)

E                                                     (10) 

and the (a priori) structure of dependence between the risk profiles  and  measured by the correlation 

coefficient is given by 

ov( , )
orr( , ) =

ar( ) ar( )

C
C

V V
2( )

1
= .

2 ( , 1) ( , 1)B B
                               (11) 

Thus, since | | 1,  we obtain the bound: 

2( )

1 1
| orr( , ) | .

2 ( , 1) ( , 1)B B
C                                                              (12) 
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For the special case, = = 1  it follows that 

| | 1
| orr( , ) |= .

4 4
C                                      (13) 

2. Analyzing the robustness of the independence 

hypothesis between risk profile parameters 

Let
 21,

 

2211 2121 FF

be a prior density in the FGM family with 

1 ( ) ( , )G a b:  and 
2 ( ) ( , )G c d:  fixed mar-

ginals, where = 1( 1)  represents the maximum 

(minimum) degree of positive (negative) depen-
dence allowed in the model. 

Following De la Horra and Fernández (1995), there 
exists a simple way to test the assumption of prior 
independence between the  and  risk profiles. 
Consider the class of priors  

( >0) ( <0)= , where 

1 2( , ) = ( ) ( )
I

 is the prior density ob-

tained under independenceand ( =1, 1)( , )  in the 
FGM family with = 1 ( 1)  are fixed densities 

with marginals 1 ( ) and 2 ( ) ,  representing 
the larger of positive (negative) dependence. 

( >0) ( =1)= ( , ) = (1 ) ( , ) ( , ), [0,1] ,
I

( <0) ( = 1)= ( , ) = (1 ) ( , ) ( , ), [0,1] ,
I  

In order to test the influence of the independence hy-
pothesis on posterior decisions, we focus on the prob-
lem in the following way. The Bayesian premium (i.e., 
the posterior mean of the true individual premium) 
plays an important role in ratemaking. As we know, 

2
( ) = .

( 1)
SE   

Then, the Bayes premium is obtained as the (post-
erior) expected value, 

( | ) 0 0

2 1 2 1
= ( , | ) .

( 1) ( 1)
s

s d dE                                                                     (14)

We present a particular way of determining whether 
there are large departures from premium measures 
when the assumption of prior independence is re-
laxed, and we find a method to account for such 
consequences in several common situations. That is, 
once the data are observed, we are interested in upper 
 

and lower bounds of these posterior quantities in 

(14) over class . 

As in De la Horra and Fernández (1995), differentiat-
ing with respect to , the above bounds are calculated 
comparing only the three following quantities: 

,1,1,
,,

,,,
i

ddsf

ddsfh

i

i
                                                                                      (15) 

ddsf

ddsfh

I

I

,,

,,,
and ,  

  

                                                                                                (16)

where 
2 1

( , ) =
( 1)

h  and ( | , )f s  is the 

likelihood function given in equation (3). 

The difference between the upper and lower 
bound obtained from equations (15) and (16), 
denoted by U – L, is a measure of the robustness 
(or its absence, i.e., sensitivity) of the prior inde-
pendence, for different values of s. In order to 
standardize this measure, we use a slight modifi-
cation of the RS factor (Sivaganesan, 1991) de-
fined by:  

= 100 .
2 ( ( , ))

I

U L
RS

hE
                                  (17)

 

RS is a standardized factor which can be thought of as 
the percentage variation in the Bayes premium as  

varies over  on either side of ( ( , ) | ),
I

h sE
 

which is used as a pattern (independence scene), like 

the center of the variation interval ( , ).L U  

Example 2. Consider an insurance business where 
the number of claims N has a Poisson-Lindley dis-
tribution with the parameter .  Suppose also that 
each single claim size distribution is exponential 
with parameter . As commented in previous sec-
tions, one of the most useful compound collective 
risk models consists in assuming a Gamma prior 
distribution over  (and ). This is reasonable, since 
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