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Profits from technical analysis: an empirical evidence  

of precious metal markets 

Abstract 

The main objective of this study is to investigate the validity and predictability of technical analysis in precious metal 

markets. This study applies the bootstrap tests of White (2000) and Hansen (2005) to determine if there are favorable 

trade rules among the “universe” of technical trading rules of the Sullivan et al. [3] research. This study employs the 

powerful bootstrap tests to determine the profitability of technical analysis with the restructuring of non-synchronous 

trading and transaction costs. The empirical results strongly indicate that the three elements, data snooping, non-

synchronous trading and transaction costs, have a significant impact on the overall performance of technical analysis. 

In fact, these results illustrate that economic profits cannot be generated among the ten precious metal market indices. 

Keywords: technical analysis, data snooping, bootstrap tests.  

JEL Classification: G15, F37. 
 

Introduction© 

Technical analysis is a well-established method of 

forecasting future market movements by generating 

buy or sell signals based on specific information 

gained from previous prices. The continuing preva-

lence and application of technical analysis has come 

to be widely recognized, even among academic 

scholars, with the techniques for discovering any 

hidden patterns ranging from the very rudimentary 

analysis of moving averages, to the recognition of 

quite complex time series patterns. Brock et al. 

(1992) show that simple trading rules based upon 

the movements of a short-run and a long-run mov-

ing average return have significant predictive power 

over a century of daily data on the Dow Jones indus-

trial average. Fifield, Power, and Sinclair (1995) 

went on to investigate the predictive power of the 

“filter” rule and the “moving average oscillator” 

rule in eleven European stock markets covering the 

period from January 1991 to December 2000. Their 

main findings indicated that four emerging markets, 

Greece, Hungary, Portugal and Turkey, were infor-

mationally inefficient, relative to the other seven 

more advanced markets. Empirical results in the 

past support technical analysis among them (Blume 

et al., 1994; Lo et al., 2000; and Savin et al., 2007). 

However, such evidences may be criticized for their 

data snooping bias. (e.g., Lo and MacKinlay, 1990; 

and Brock et al., 1992). 

Data snooping occurs when a given set of data is 

used more than once for purposes of inference or 

model selection. When such data reuse occurs, there 

is always the possibility that any satisfactory results 

obtained may simply be due to chance rather than to 

any merit inherent in the method yielding the re-

sults. This problem is practically unavoidable in the 

analysis of time-series data, as typically only a sin-
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gle history measuring a given phenomenon of inter-

est is available for analysis. It is widely acknowl-

edged by empirical researchers that data snooping is 

a dangerous practice to be avoided but in fact it is 

endemic. The main problem has been a lack of suf-

ficiently simple practical methods capable of assess-

ing the potential dangers of data snooping in a given 

situation. Sullivan et al. (1999) apply the White 

(2000) “reality check (RC)” test and find that tech-

nical trading rules lose their predictive power for 

major U.S. stock indices after the mid 80s. Chen et 

al. (2009) find that the results of technical analysis 

remain valid in all Asian markets, with the excep-

tion of South Korea, even after controlling for data 

snooping bias through the bootstrap reality check 

(RC) of White (2000) and superior predictive ability 

(SPA) test of Hansen (2005). Hsu et al. (2010) ex-

tend the SPA test of Hansen (2005) to a stepwise 

SPA test that can identify predictive models without 

potential data snooping bias. In the present study, 

we set out to empirically test the efficacy of techni-

cal analysis within thirteen precious metal market 

indices, employing the two data snooping adjust-

ment methods for non-synchronous trading and 

transaction costs proposed by White (2000) and 

Hansen (2005). 

The efficient market hypothesis (EMH) has domi-
nated empirical finance, largely as a result of the 
work of Fama (1970). An enormous wealth of asso-
ciated literature during the 1970s provided support 
for the weak form of this hypothesis, in which it is 
suggested that changes in past share prices cannot 
be used to forecast future share returns. Along the 
same vein, precious metal market efficiency implies 
that precious metal prices respond quickly and accu-
rately to relevant information. If precious metal 
prices are mean reverting, then it follows that the 
price level will return to its trend path over time and 
that it might be possible to forecast future move-
ments in precious metal prices based on past behav-
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ior. By contrast, if precious metal prices follow a 
random walk process, then any shock to prices is 
permanent. This means that future returns cannot be 
predicted based on historical movements in precious 
metal prices and that volatility in precious metal 
markets increases without bound. 

Historically, technical analysis is equally appealed 

among financial and agricultural commodity mar-

kets as illustrated by popular practitioner books, for 

examples, Murphy (1986), Arnold (1993), and Pring 

(2002). The most widely followed futures composite 

index is the commodity research bureau (CRB) in-

dex represents basket of 21 industrial and agricul-

ture commodities. The CRB index is particularly 

sensitive to price movement in the grains and oil 

complex. However, as surveyed by Park and Irwin 

(2007), most empirical studies of the efficacy of 

technical analysis concentrate on stock markets and 

foreign exchange markets. Only a smaller number of 

studies devote to commodity markets, in particular, 

precious metal markets.  

MacDonald and Taylor (1988a) used the bivariate 
vector autoregressive approach with appropriate 
stationarity-inducing transformations to test the 
efficient market hypothesis in terms of four primary 
metals quoted on the London metal exchange. The 
metals studied are copper, lead, tin and zinc over the 
period from January 1976 to March 1987. They 
demonstrated the rejection of the joint efficient 
markets hypothesis for copper and lead of the four 
examined metals. Besides, MacDonald and Taylor 
(1988b) focused on the market efficiency of metals 
prices from the London metal exchange. Their main 
finding concerns the result that none of their chosen 
spot metal prices are cointegrated and supports the 
efficient markets hypothesis. 

Sephton and Cochrane (1990) examined the market 
efficiency hypothesis with respect to six metals 
traded on the London metal exchange (LME). Using 
overlapping data and both single and multimarket 
models, they found evidence contradictory to the 
tenet that the LME is an efficient market.  

Jones and Uri (1990) investigated the efficiency of 
three primary metals markets in the USA using both 
static cointegration and dynamic error correction 
tests. The spot prices of lead, tin and zinc over the 
period from January 1964 to December 1987 have 
served as the basis of the analysis. The results 
showed that spot prices for lead and both, tin and 
zinc, are cointegrated at the 1% level. This fact 
meant that these markets are not efficient in the 
semistrong form sense since casuality must run in at 
least one direction. 

Sephton and Cochrane (1991) suggested that some 

markets on the LME do not exhibit the major char-

acteristics of efficient markets: rationality and risk 

neutrality. They pointed that the tin market exhib-

ited a risk premium and was inefficient between 

1976 and 1985. Narayan et al. (2010) examined the 

long-run relationship between gold and oil spot and 

futures markets. They tested for the long-run rela-

tionship between gold and oil futures prices at dif-

ferent maturity and unravel evidence of cointegra-

tion. The evidence of Narayan et al. (2000) indi-

cated that the oil market can be used to predict the 

gold market prices and vice versa, thus, these two 

markets are jointly inefficient. 

We set out in this study to test empirically the prof-

itability of technical analysis in ten precious metal 

market indexes of futures and spots over the period 

from January 1968 to December 2009, taking into 

account the relevant data snooping biases, non-

synchronous trading effects and transaction costs. 

We reexamine the performance of technical rules 

by implementing the White (2000) “reality check” 

and the Hansen (2005) “superior predictive abil-

ity” test in order to fully investigate the effects 

that data snooping can have on trading rules. Our 

study extends the set of trading rules considered 

in Bessembinder and Chan (1995) to the “uni-

verse” of 7846 trading spaces suggested in Sulli-

van, Timmermann, and White (1999). 

The remainder of this paper is organized as follows. 

An explanation of the test algorithms and the trading 

rules proposed in this study is provided in Section 1. 

Section 2 presents our presentation and subsequent 

analysis of the empirical results. Finally, the conclu-

sions drawn from this study are provided in the last 

Section, along with some suggestions for further 

development of our approach. 

1. Methodology 

In this Section, we describe the methodology used 

in our study, including the test algorithms and the 

trading rules. The former comprises the “reality 

check” of White (2000) and the “superior predic-

tive ability” test of Hansen (2005), while the latter 

introduces the 7846 universal rules proposed by 

Sullivan et al. (1999). 

1.1. The reality check and superior predictive 

ability tests. Trading model dependence makes it 

difficult to construct a formal test to differentiate 

between a genuine model with superior predictability 

and other spurious models. White’s “reality check”, 

which initially built on Diebold and Mariano (1995) 

and West (1996), employed the block resampling 

procedure of Politis and Romano (1994) in a predic-

tive power test model to account for the effect of 

data mining. 
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We begin by defining the relative performance of 
models k, k =1, ..., m, against the benchmark at time 
t, t =1, ..., n, as follows: 

mkt,tt,ktt,k ,,1,0),,(),( 101
    (1) 

ttktkt 1,1, ),( ,  

where t  represents the random real asset returns; 

1, tk  is the trading signal of the forecasting model k, 

at t  1; and k = 0 represents the market model.  

Let ( )k
k

E  be the expected excess return of 

model k. As we are interested to know whether 

any of the models are better than the benchmark, 

the natural null hypothesis of interest can then be 

defined as:

0
1,...,

: max 0
k

k m
H .      (2) 

Rejection of this null hypothesis leads to the exis-

tence of the best technical trading rule achieving 

performance superior to the benchmark. The 

block re-sampling procedure of Politis and 

Romano (1994) is employed to generate 500 

pseudo time-series 
B

tk ,  from the observed value 

tk , . We construct the following two statistics 

from both, the real series and the pseudo series: 
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The comparison between RC

nT  and the BRC

nT .  quin-

tiles provides the White (2000) p-value for the null 
hypothesis test. The “superior predictive ability” test 
of Hansen (2005), the development of which was 
based upon White’s “reality check”, provides an 
alternative method of correcting the findings for data 

snooping effects. Hansen (2005) demonstrated that the 

“reality check” can be seriously manipulated by other 

irrelevant models, resulting in reduced test power, and 

therefore utilized the studentized process to remove the 

irrelevant models in the sample. Similar to White 

(2000), the two statistics are provided as: 
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where kˆ  is a consistent estimator for return 

variance, calculated by the stationary bootstrap 

method of Politis and Romano (1994), and 

}2{ 2
11

nloglogkˆ/n
k

c

k
k

ˆ  is the threshold used 

for the removal of the irrelevant models. The com-

parison between 
SPA

nT  and 
B,SPA

nT quartiles provides 

the p-value for the Hansen (2005) “superior predic-

tive ability” null hypothesis test. 

1.2. Technical analysis. Sullivan et al. (1999) ex-

tended the sample rules proposed by Brock et al. 

(1992), to a larger universal technical analysis 

space. In this paper, we adopt the two sets of rule 

spaces proposed in these two studies, and undertake 

a comprehensive comparison of their performance. 

The Sullivan et al. (1999) trading set comprises of 

7846 universal trading rules belonging to five tech-

nical analysis catalogs, as shown in the following 

sub-sections, each of which provides a brief over-

view of these rules. 

1.2.1. Filter rules. The standard filter rule can be 

explained as in Fama and Blume (1966, p. 227). 

We define an X per cent filter as follows. If the daily 

closing price of a particular security moves up by at 

least X percent, then an investor buys and holds the 

security until its price moves down at least X per-

cent from the subsequent high, at which time the 

investor simultaneously sells and takes up a short 

position. This short position is maintained until the 

daily closing price rises by at least X per cent above 

the subsequent low, at which time the investor cov-

ers and buys. Any movements of less than X percent in 

either direction are ignored.  

In executing the filter rule, this study relies upon 
four parameters: (1) a change in the share price re-
quired to initiate a position (ranging from 0.005 to 
0.5, giving a total of 24 values); (2) a change in the 
share price required to liquidate a position (ranging 
from 0.005 to 0.2, giving a total of 12 values); (3) an 
alternative definition of extremes, where a low 
(high) can be defined as the most recent closing 
price which is less (greater) than the n previous 
closing prices (ranging from1 to 20, giving a total of 
eight values); and (4) the number of days a position 
is held (5, 10, 25 or 50 days, giving a total of four 
values). The various permutations of the above four 
parameters result in the construction of a total of 
497 filter rules.  

1.2.2. Moving average (MA) rules. A moving aver-

age strategy is designed to detect a trend with a buy 

(sell) signal, being generated when the short-term 

average price crosses the long-term average price 

from below (above). The execution of a moving 

average rule relies on five parameters: (1) the num-
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ber of days for the short-run moving average (rang-

ing from 2 to 250, giving a total of 15 values); (2) 

the number for the long-run moving average, and 

combination of the short-run and long-run moving 

average give a total number of 105; (3) a fixed band 

multiplicative before a signal is recognized to avoid 

small difference between the short-run and long-run 

moving average (ranging from0.001 to 0.05, giving 

a total of eight values); (4) the number of days in the 

time delay before the signal is acted upon (2, 3, 4 or 

5 days, giving a total of four values); and (5) the 

number of days that a position is held (5, 10, 25 or 

50 days, giving a total of four values).  

An example of this is MA (1, 2, 0, 0, 0), which 

represents the moving average as defined by the 

following five parameters: (1) a 1-day (short-term) 

average line; (2) a 2-day (long-term) average line; 

(3) a zero fixed band; (4) no time delay; and (5) a 

variable holding day. The various permutations of 

the above five parameters result in the construction 

of a total of 2049 rules. 

1.2.3. Support and resistance rules. A “support and 

resistance” strategy supplies details on the market 

movements relating to historical support and resis-

tance lines. A buy (sell) signal is generated when the 

closing price exceeds (falls below) the historical 

maximum (minimum) within a given time frame. 

Similar to the “moving average” rules, the execution 

of a support and resistance rule relies on five pa-

rameters: (1) the number of days in the support and 

resistance range (ranging from 5 to 250, giving a 

total of ten values); (2) an alternative definition of 

extremes, where a low can be defined as the most 

recent closing price which is less than the previous n 

closing prices (ranging from 2 to 200, giving a total 

of ten values); (3) a fixed band multiplicative value 

(ranging from 0.001 to 0.05, giving a total of eight 

values); (4) the number of days in the time delay (2, 

3, 4 or 5 days, giving a total of four values); and (5) 

the number of days that a position is held (5, 10, 25 

or 50 days, giving a total of four values). The vari-

ous permutations of the above five parameters result 

in the construction of a total of 1220 rules. 

1.2.4. Channel breakout rules. A “channel break-

out” strategy is similar to the support and resistance 

rule. The buy (sell) signal is generated when the 

closing price moves up (down) the upper (lower) 

channel. The execution of a channel breakout rule is 

reliant upon the following four parameters: (1) the 

number of days in the channel (ranging from 5 to 

250, giving a total of ten values); (2) the difference 

between the high and low price required to form a 

channel (ranging from 0.005 to 0.15, giving a total 

of eight values); (3) a fixed band multiplicative 

value (ranging from 0.001 to 0.05, giving a total of 

eight values); and (4) the number of days that a po-

sition is held (5, 10, 25 or 50 days, giving a total of 

four values). The various permutations of the above 

five parameters result in the construction of a total of 

2040 rules. 

1.2.5. On-balance volume average (OBV) rule. An 

“on-balance volume averages” strategy is a volume-

based version of the moving average rules. A buy 

(sell) signal is generated when the short-term aver-

age volume crosses the on-term average volume 

from below (above). The parameters required in the 

on-balance volume averages strategy are similar to 

those for the moving average rules. This category 

has a total of 2040 rules. 

1.3. Implementation. First, we apply the 7846 trad-

ing rules of universe of Sullivan et al. (1999) to the 

time series of ten precious metal price indices. For 

example, a certain type of moving average trading 

indicator, MA (1, 250, 0, 0, 10), generates a trading 

signal of buying, selling, or neutral on each trading 

day for the gold bullion spot index (LBM) as fol-

lows. When the current price crosses the long-term 

moving average of 250-day prices from below 

(above) then a buy (sell) signal is generated with 

long position (short position) of +1 (-1). The trading 

signal effects on the immediate trading day and holds 

for the following 10 days. The performance statistic of 

the MA (1, 250, 0, 0, 10) for LBM is set as: 

,1

1
T

Rt

tf̂nf       (5) 

where n is the number of prediction periods of LBM 

indexed from R through T so that T = R + n  1, 
^

1tf is the realized performance measure for the day 

t + 1. Specifically, in the sample of LBM, n is set 

equal to 10697, R is set equal to 251, accommodat-

ing the technical indicators that require 250 previous 

daily data in order to produce trading signals. The 

performance measure is exactly defined as follows: 

,,1ln,1ln 0111, tktktkttk SySyf   (6) 

where ,
0

R

iitt X  Xt is the original price series 

of LBM, 1 1 /
t t t t

y X X X , and .
k

S and 

0 .S are respectively signal functions of trading rule 

k (here, MA (1, 250, 0, 0, 10)) and the buy-and-hold 

strategy that convert the sequence of price index 

information 
t
into trading signals of long position 

of +1, short position of -1, and neutral position of 0. 

The , 1k t
f represents the relative trading return of the 

trading rule k with respective to the buy-and-hold 

strategy on the day t + 1.  
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Second, repeat the first step for all k = 1,.., 7846 
rules on the price series of LBM and complete the 
computation of relative performance measures of 
the full universe of Sullivan et al. (1999). This study 
then examines the profitability of technical analysis 
on LBM in terms of nominal data snooping test, 
non-synchronous trading adjustment, transaction 
costs adjustment, and White’s (2000) and Hansen’s 
(2005) bootstrapping tests. The nominal data snoop-
ing test of this study is inherently the performance 
test of Brock et al. (1992). This study also follows 
the one-day lag adjustment proposed by Bessem-
binder and Chan (1995) to partially calibrate the 
non-synchronous bias. Specifically, we associate the 
day t + 2 return with the initial trading signal emit-
ted at the close of day t, thereby allowing the com-
ponent stocks of the index to be fully traded on the 
intervening days. We incorporate the transaction 
costs of the ten precious metal market indices into the 
analysis of the profitability of technical analysis in this 
study. The round-trip costs utilized in this study are 
drawn from the member fees of CME group and range 
from the highest high grade copper futures index 
(CMX) of 0.5% to the lowest copper, grade a cash spot 
index (LME) of 0.02%. Finally, this study adjusts the 
performance of technical analysis for data snooping 
bias by employing the White (2000) “reality check” 
and the Hansen (2005) “superior predictive ability” 
test as illustrated in the Section 1.1.  

2. Empirical results and analysis 

We set out in this study to test empirically the prof-
itability of technical analysis of Sullivan et al. 
(1999) in precious metal market indices over the 
period of 1968-2009, taking into account the rele-
vant data snooping biases, non-synchronous trading 
effects and transaction costs. The testing markets 
indices cover ten precious metal markets which are 
comprised of five futures: high grade copper futures 
index (CMX), gold 100 OZ futures index (CMX), 
palladium futures index (NYM), platinum futures 

index (NYM), silver 5000 OZ futures index (CMX), 
as well as five spots: copper, grade a cash spot index 
(LME), gold bullion spot index (LBM), London 
palladium free market spot index, London platinum 
free market spot index and silver spot index (LBM). 
The empirical market data of daily prices and daily 
volumes utilized in this study are obtained from 
datastream international. Moreover, the actual re-
search horizon for each index, which referred to 
Table 1, is trimmed according the data availability 
from datastream international. Meanwhile, the 
whole universal set of trading rules are employed 
in the futures markets while only part of them are 
tested in the spot markets due to the lack of vol-
ume data in the latter. Ultimately, the trading 
rules for the futures and spot markets are respec-
tively amounting to 7846 and 5806. 

The summary statistics of the daily returns for ten 

precious metal market indices are reported in Table 

1. Among them, the longest research coverage be-

longs to gold bullion spot index (LBM) with 10947 

observations and the shortest for copper, grade a 

cash spot index (LME) with 4296 observations. The 

mean daily return is rather diversified ranging from 

the highest 0.031 of gold bullion spot index (LBM) 

to the lowest 0.0168 of silver 5000 OZ futures index 

(CMX). The highest volatility is found in the silver 

spot index (LBM) of 0.0224 and the lowest volatil-

ity is found in the gold 100 OZ futures index (CMX) 

of 0.0124. The empirical evidence shows that most 

markets possess left skewness even not in the statis-

tical significance. However, the fat right tails are 

strongly embedded in all precious metal markets as 

indicated in Table 1 and, therefore, the behaviors of 

daily returns are almost far from the presumed nor-

mality assumption. Finally, the autocorrelation sta-

tistics shown in Table 1 indicate the palladium fu-

tures and spots exhibit strong positive first order 

autocorrelation while other markets show no signifi-

cant series dependence for the time lags structure.    

Table 1. Summary statistics of the precious metal market futures and spot indices 

Variablesb 
 Data period 

No. of 
observations Mean (%) S.D. Skewness Kurtosis (1) (2) (3) (4) 

High grade copper futures index (CMX) 1989/09~2009/12 5295 0.0170 0.0170 -0.2067 7.4541 -0.0772 -0.0009 -0.0117 0.0124 

Gold 100 OZ futures index (CMX) 1977/08~2009/12 8428 0.0230 0.0124 -0.0560 10.7629 -0.0116 0.0156 0.0195 -0.0398 

Palladium futures index (NYM) 1979/01~2009/12 8078 0.0203 0.0205 -0.0829 10.7163 0.0635*** 0.0020 -0.0088 -0.0014 

Platinum futures index (NYM) 1979/01~2009/12 8078 0.0174 0.0168 -0.1772 11.7924 0.0073 0.0267** 0.0172 -0.0322 

Silver 5000 OZ futures index (CMX) 1988/05~2009/12 5629 0.0167 0.0170 -0.6048 10.8871 -0.0123 0.0038 0.0090 -0.0186 

Copper, grade a cash spot index (LME) 1993/07~2009/12 4296 0.0296 0.0172 -0.2000 7.0332 -0.0606 -0.0433 0.0070 0.0202 

Gold bullion spot index (LBM) 1968/01~2009/12 10947 0.0315 0.0128 0.2164 31.4141 -0.0307 0.0103 0.0121 0.0033 

London palladium free market spot index 1987/01~2009/12 5989 0.0188 0.0198 -0.1431 10.9003 0.0442*** -0.0379 -0.0189 -0.0043 

London platinum free market spot index 1976/01~2009/12 8860 0.0257 0.0168 -0.4670 12.6317 -0.0087 -0.0189 0.0203 -0.0222 

Silver spot index (LBM) 1970/01~2009/12 10422 0.0215 0.0224 0.2314 42.4664 -0.1221 0.0163 0.0140 -0.0075 

Notes: b (i) is the estimated autocorrelation at lag i for each series. * Significant of the two-tailed test at the 10% level. ** Signifi-

cance at the 5% level. *** Significant at the 1% level. 
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2.1. Optimum rules for the thirteen precious 

metal market indices. This Section reports the 

characteristics of the best trading rules and their 

associated profits within the precious metal market 

indices. With no consideration of the issues of non-

synchronous trading biases or transaction costs, the 

optimal trading rules for the spot markets and fu-

tures markets are rather distinct. The OBV rules and 

MA rules are respectively served as the best in fu-

tures and spot markets. Among the best MA rules in 

futures and spot markets, the windows of moving 

averages are diversified, ranging two- through 250-

day, which contrast sharply with about two- through 

five-day windows reported in U.S. markets by Sul-

livan et al. (1999) and in Asian markets by Chen et 

al. (2009). In consequence, the resultant trading 

signals for precious metal market indices tend to be 

diversified. From these, the lowest frequency is 

found in the high grade copper futures index (CMX) 

and gold 100 OZ futures index (CMX), where the 

total number of buy and sell signals are 16 and 15. 

The highest frequency is found in the palladium 

futures index (NYM), where the total number of buy 

and sell signals are 1791 and 1790. Moreover, al-

most all best trading rules exhibit significant mean 

returns at 1% level except silver 5000 OZ futures 

index (CMX) and silver spot index (LBM) reaching 

5% significance. The mean daily returns of the best 

rules range from a high of 0.146% for the London 

palladium free market spot index to a low of 0.043% 

for gold 100 OZ futures index (CMX); all of these 

easily outperform a buy-and-hold strategy across 

their various market indices. 

We further decompose the results on trading signals 

into buy-signals and sell-signals in order to exam-

ine, in some detail, the characteristic features of 

these buy and sell signals, and find that the fre-

quency of buy and sell signals is approximately 

equal for each market. For instance, London palla-

dium free market spot index results in a total of 

1380 (1379) buy (sell) signals for the best rules. 

However, the frequency of buy and sell signals var-

ies across the different markets. For example, palla-

dium has the highest of buy and sell signals, 

whether in the futures (1791:1790) and spot 

(1380:1379) market, whereas gold has the lowest 

buy and sell signals in the futures (16:15) and spot 

(17:16) market. As a result, there are also significant 

variations in the ratios of the average holding hori-

zons for buy and sell signals across markets. It is 

found to be highest in the gold bullion spot index 

(LBM) with a ratio of 379.18:265.63, and lowest in 

the London palladium free market spot index, where 

the ratio is 2.36:1.80. 

As noted by Bessembinder and Chan (1995), sig-

nificant return differentials between buy and sell 

signals indicate that the technical rules in precious 

metal market indices are capable of conveying eco-

nomic information. The differentials in the daily 

returns resulting from buy and sell signals for the 

best rules found in this study are sufficiently wide to 

generate significant economic profits across the 

precious metal market indices. For example, the 

mean difference between buy and sell signals in the 

London palladium free market spot index 0.285%, 

whilst the gold 100 OZ futures index (CMX), which 

has the lowest figure, still manages to achieve a 

0.079% return differential.  

2.2. The effects of data snooping on trading rules. 

We examine the profitability of technical analysis in 

greater depth in this section by taking into account 

the level of dependence that exists between the trad-

ing models, adjusting for data snooping bias by em-

ploying the White (2000) “reality check” and the 

Hansen (2005) “superior predictive ability” test. 

As shown in Table 3, the mean daily return of the 

best rule in ten precious metal market indices all are 

significantly higher than the buy-and-hold mean 

daily returns. The notable examples include London 

palladium free market spot index, palladium futures 

index (NYM), copper, grade a cash spot index 

(LME), and gold bullion spot index (LBM) respec-

tively amounting to 36.38%, 35.16%, 25.93%, and 

14.42% comparing to 4.7%, 5.07%, 7.40%, and 

7.87% of the indices in annual returns. All the four 

precious metal future and spot indices above pro-

vide abnormal returns significantly in terms of 

nominal reality check. However, only London pal-

ladium free market spot index and palladium futures 

index (NYM) are marginally better than the market 

indices in the SPA test and RC test. The fact clearly 

delineates the tendency of over-optimism toward the 

acceptance of superior trading rules as well as the 

neglect of the potential data snooping effect among 

the universe of technical analysis. Table 3 shows 

that, as in the majority of prior empirical studies 

within the finance literature, all of the best rules in 

the precious metal market indices significantly out-

perform their buy-and-hold alternatives. However, 

our empirical results also reveal quite a striking 

finding in precious metal markets, that when con-

trolling for the dependence in the trading models of 

the Sullivan et al. (1999) “universe”, most of the 

precious metal market indices in our sample, with 

the two exceptions of London palladium free 

market spot index and palladium futures index 

(NYM), confirm the non-existence of a superior 

technical rule. 



 

 

Table 2. Standard test results for the technical rules among the precious  

metal market futures and spot indices 

 Mean Buy returnd Sell returnd Buy-Selld  
Round-trip  

costf 

 

Best rulea Orderb  

(%) t-value 

Long dayc /buy signals 

(%) t-value 

Short dayc / 
 sell signals 

(%) t-value 

BAHDe /SAHD 

(%) t-value (%) 

High grade copper futures index (CMX) MA(40, 125, 0, 0, 50) 2495 0.073 3.066 2694 16 0.098 3.129 2350 15 0.045 3.129 168.38 156.67 0.142 2.982 0.505 

Gold 100 OZ futures index (CMX) MA(30, 250, 0, 0, 25) 2425 0.043 3.098 4677 16 0.061 3.167 3500 15 0.018 3.167 292.31 233.33 0.079 2.838 0.168 

Palladium futures index (NYM) MA(1, 2, 0, 0, 0) 498 0.141 6.082 4427 1791 0.151 4.963 3400 1790 0.126 4.963 2.47 1.90 0.278 5.957 0.329 

Platinum Futures Index(NYM) MA(50, 125, 0, 0, 50) 2496 0.048 2.563 4477 27 0.064 2.546 3350 26 0.028 2.546 165.81 128.85 0.091 2.398 0.119 

Silver 5000 OZ futures index (CMX) OVB(20, 25, 0, 3, 0) 7066 0.053 2.268 2697 583 0.088 2.736 2679 584 0.018 2.736 4.63 4.59 0.105 2.264 0.104 

Copper, grade a cash spot index (LME) MA(10, 75, 0, 0, 5) 2156 0.104 3.812 2380 29 0.123 3.605 1665 28 0.076 3.605 82.07 59.46 0.200 3.610 0.022 

Gold bullion spot index (LBM) MA(30, 250, 0, 0, 25) 2425 0.058 4.611 6446 17 0.081 4.655 4250 16 0.024 4.655 379.18 265.63 0.104 4.077 0.206 

London palladium free market spot index MA(1, 2, 0, 0, 0) 498 0.146 5.558 3256 1380 0.163 4.783 2482 1379 0.122 4.783 2.36 1.80 0.285 5.396 0.288 

London platinum free market spot index MA(100, 125, 0, 0, 25) 2393 0.052 2.850 4960 30 0.080 3.332 3649 30 0.013 3.332 165.33 121.63 0.093 2.547 0.127 

Silver spot index (LBM) MA(2, 30, 0, 0, 50) 2448 0.051 2.263 5521 47 0.092 2.821 4650 46 0.003 2.821 117.47 101.09 0.095 2.088 0.105 

Notes: a“Best rule MA” denotes the moving average with five parameters (n, m, b, d, c), where n-days is the short-term horizon line; m-days is the long-term horizon line; b is the filter rate (%); d-
days is the time delay; and c-days is the holding days. b“Order” refers to the location of the best universal rule. c“Long (short) day” refers to the number of buying days for the best rule. d“Buy (sell) 
signals” referring to the number of buy (sell) signals for the best rule with the t-values referring to the two-tailed t-test. e“BAHD (SAHD)” denotes the average holding days for the buy (sell) sig-
nals. fThe transaction (round-trip) costs for thirteen precious metal market indices are adopted from member fees of CME group. 
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Table 3. Bootstrapped test results for the technical rules among the precious  

metal market futures and spot indices 

Daily returnc 
 Best  rulea Orderb 

(%) t-value 

Annual 
return (%) 

Index  
(%) 

SPAd RCe 
Nominal 

RCf 

High grade copper futures index 
(CMX) 

MA(40, 125, 0, 0, 50) 2495 0.073 3.066 18.266 4.252 0.886 0.886 0.112 

Gold 100 OZ futures index (CMX) MA(30, 250, 0, 0, 25) 2425 0.043 3.098 10.639 5.753 0.954 0.996 0.188 

Palladium futures index (NYM) MA(1, 2, 0, 0, 0) 498 0.141 6.082 35.161 5.073 0.092 0.092 0.000 

Platinum futures index (NYM) MA(50, 125, 0, 0, 50) 2496 0.048 2.563 12.083 4.355 0.940 0.986 0.172 

Silver 5000 OZ futures index (CMX) OBV(20, 25, 0, 3, 0) 7066 0.053 2.268 13.163 4.180 0.998 1.000 0.316 

Copper, grade a cash spot index 
(LME) 

MA(10, 75, 0, 0, 5) 2156 0.104 3.812 25.934 7.404 0.586 0.590 0.034 

Gold bullion spot index (LBM) MA(30, 250, 0, 0, 25) 2425 0.058 4.611 14.424 7.871 0.638 0.900 0.084 

London palladium free market spot 
index 

MA(1, 2, 0, 0, 0) 498 0.146 5.558 36.382 4.705 0.080 0.086 0.002 

London platinum free market spot 
index 

MA(100, 125, 0, 0, 25) 2393 0.052 2.850 12.901 6.422 0.976 1.000 0.312 

Silver spot index (LBM) MA(2, 30, 0, 0, 50) 2448 0.051 2.263 12.834 5.378 0.984 1.000 0.450 

Note: a“Best rule MA”denotes the moving average with five parameters (n, m, b, d, c), where n-days is the short-term horizon line; 

m-days is the long-term horizon line; b is the filter rate (%); d-days is the time delay; and c-days are the holding days. b“Order” 

refers to the location of the best universal rule. cThe t-value refers to the two-tailed t-test. d“RC” refers to the p-value for the White 

(2000) ‘reality check’ to the full universe. e“SPA” refers to the p-value for the Hansen (2005) ‘superior predictive ability’ test to the 

full universe. f“Nominal RC” refers to the p-value obtained by applying the “reality check” to the best rule only, without relating it 

to the full set of rules. 

2.3. The effects of non-synchronous trading bias 

on technical analysis. Technical analysis trading prof-

its arise mainly from positive serial dependence on 

stock index returns. However, as demonstrated by 

Scholes and Williams (1977), non-synchronous trad-

ing amongst component stocks may give rise to spuri-

ous positive serial dependence in the index returns, 

leading to the resultant measurement error potentially 

overestimating the trading profits of technical analysis. 

We adopt the one-day lag adjustment proposed by 

Bessembinder and Chan (1995) in the present study to 

partially calibrate the non-synchronous bias. Specifi-

cally, we associate the day t + 2 return with the initial 

trading signal emitted at the close of day t, thereby, 

allowing the component stocks of the index to be 

fully traded on the intervening days. Our empirical 

results, which are reported in Table 4, reveal that the 

non-synchronous effect is considerable and results in 

a significant alteration to the best rules selected for 

the samples.  

After calibrating the non-synchronous bias, we can 
find the best rules still lie in the original rule catego-
ries except high grade copper futures index (CMX) 
changing from the MA rule to the OBV rule. How-
ever, the parameter structures of best rules indeed 
move slightly around the original ones. For exam-
ple, the best rule in palladium futures index (NYM) 
changes from MA (1, 2, 0, 0, 0) to MA (1, 250, 0, 0, 
10). Furthermore, controlling for the non-
synchronous effect is also found to have adverse 
effects on the performance of the best rules reported 
in Table 3. For instance, the highest mean return for 

the London palladium free market spot index in 
Table 3, which is achieved by the MA (1, 2, 0, 0, 0) 
rule, declines from 0.15% to 0.01% when taking the 
non-synchronous effect into account, whilst the new 
optimal rule, MA (50, 100, 0.001, 0, 0), mean daily 
return is 0.10%, the gap between the two best rules is 
obvious. In fact, the effect of non-synchronous has 
much change for the best trading rules but the mean 
daily returns are not significantly affected. The nomi-
nal RC test provides the same result to Table 3 that 
only four previous indices, namely London palladium 
free market spot index, palladium futures index 
(NYM), copper, grade a cash spot index (LME), and 
gold bullion spot index (LBM), remain significantly 
better than the buy-and-hold strategy.  

We also take the model dependence into considera-
tion by carrying out the reality check and superior 
predictive ability test. As shown in Table 4, when 
ignoring the potential model dependence in the Sul-
livan et al. (1999) “universe” of technical analysis, 
only four indices which are the same with Table 3 
are still superior, in terms of the “nominal reality 
check”. However, the picture is rather different after 
controlling for the data snooping effect, there are no 
indices which have the best rule through the reality 
check and the superior predictive ability test. The 
evidence presented in Table 4 provides support for 
Sullivan et al. (1999) and White (2000) on the need 
for bootstrap testing when assessing the perform-
ance of technical analysis. The evidence also rein-
forces the fact that data snooping has a potentially 
serious bias when assessing the profitability of tech-
nical analysis rules. 
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Table 4. Bootstrapped test results for the technical rules among the precious metal market futures and spot 

indices with non-synchronous adjustment 

  Daily return Old best rule returnb 

  
Best  rulea Orderc 

(%) t-value (%) t-value 
SPAd RCe 

Nominal 
RCf 

High grade copper futures index (CMX) OBV(30, 100, 0.005, 0, 0) 6203 0.074 3.092 0.068 2.852 0.824 0.900 0.104 

Gold 100 OZ futures index (CMX) MA(40, 250, 0, 0, 25) 2426 0.041 3.013 0.041 2.951 0.980 1.000 0.198 

Palladium futures index (NYM) MA(1, 250, 0, 0, 10) 2087 0.090 3.892 0.012 0.523 0.574 0.748 0.022 

Platinum futures index (NYM) MA(40, 125, 0, 0, 50) 2495 0.045 2.365 0.043 2.283 0.950 0.992 0.196 

Silver 5000 OZ futures index (CMX) OBV(10, 25, 0, 0, 25) 7649 0.050 2.158 0.043 1.868 1.000 1.000 0.338 

Copper, grade a cash spot index (LME) MA(10, 75, 0, 2, 0) 1676 0.098 3.607 0.087 3.180 0.636 0.648 0.056 

Gold bullion spot index (LBM) MA(40, 250, 0, 0, 25) 2426 0.056 4.485 0.056 4.460 0.728 0.932 0.094 

London palladium free market spot index MA(50, 100, 0.001, 0, 0) 791 0.101 3.849 0.009 0.338 0.498 0.562 0.038 

London platinum free market spot index MA(100, 125, 0, 5, 0) 2018 0.055 3.020 0.049 2.720 0.940 0.996 0.274 

Silver spot index (LBM) MA(1, 5, 0, 0, 0) 499 0.059 2.580 0.057 2.533 0.992 1.000 0.348 

Note: a“Best rule MA” denotes the moving average with five parameters (n, m, b, d, c), where n-days is the short-term horizon line; 

m-days is the long-term horizon line; b is the filter rate (%); d-days is the time delay; and c-days are the holding days. b“Old best 

rule return” refers to the return of the best rule without institutional adjustments, as indicated in Table 2. c“Order” refers to the loca-

tion of the best universal rule. d“RC” refers to the p-value for the White (2000) “reality check” to the full universe. e“SPA” refers to 

the p-value for the Hansen (2005) “superior predictive ability” test to the full universe. f“Nominal RC” refers to the p-value obtained 

by applying the “reality check” to the best rule only, without relating it to the full set of rules. 

2.4. The effects of transaction costs on technical 

analysis. It has been argued by many researchers 

that transaction costs are a critical element in the 

overall appraisal of the economic significance of 

trading rules, particularly with regard to those rules 

which tend to generate frequent trades. We 

incorporate the transaction costs of the ten 

precious metal market indices into the analysis of 

the profitability of technical analysis in this study. 

The round-trip costs, utilized in this study, are 

drawn from the member fees of CME group and 

range from the highest high grade copper futures 

index (CMX) of 0.5% to the lowest copper, grade 

a cash spot index (LME) of 0.02%, the details 

referred to Table 2.  

When considering transaction costs, the best rules is 

similar with Table 3 which with no consideration of 

the issues of non-synchronous trading biases or 

transaction costs. In particular, as shown in Table 5, 

the best rules of Palladium indices in the future and 

spot market regularly switch to the long-run strate-

gies in order to avoid the frequently traded rules 

which attract high transaction costs. We also find 

that transaction costs exert great impacts on the 

profitability of technical analysis and results in the 

highest mean daily return (0.103%) to copper, grade 

a cash spot index (LME) which have the lowest 

transaction cost (0.02%). 

We go on to further explore the effects of data 

snooping bias under a setting in which transaction 

costs are taken into consideration. Even in the 

nominal sense of the reality check, the trading 

rules in only four of the ten precious metal market 

indices (London palladium free market spot index, 

palladium futures index (NYM), copper, grade a 

cash spot index (LME), and gold bullion spot 

index (LBM)) continue to exhibit superior profit-

ability, as compared to their corresponding buy-

and-hold strategy. However, the picture is rather 

different after controlling for the data snooping 

effect, no indices which have the best rule, through 

the reality check and the superior predictive abil-

ity test. The finding arrogantly maintains the as-

sertion of efficient market hypothesis among ten 

more developed precious metal markets under 

examination. 

Table 5. Bootstrapped test results for the technical rules amongst the precious metal market futures and  

spot indices with transaction costs adjustment 

Daily return Old best rule returnb 
 Best  rulea Orderc 

(%) t-value (%) t-value 
SPAd RCe 

Nominal 
RCf 

High grade copper futures index (CMX) MA(40, 125, 0, 0, 50) 2495 0.070 2.941 0.070 2.941 0.916 0.954 0.122 

Gold 100 OZ futures index (CMX) MA(30, 250, 0, 0, 25) 2425 0.042 3.054 0.042 3.054 0.954 0.996 0.170 

Palladium futures index (NYM) MA(1, 250, 0, 0, 10) 2087 0.088 3.798 -0.010 -0.427 0.672 0.736 0.028 

Platinum futures index (NYM) MA(50, 125, 0, 0, 50) 2496 0.048 2.521 0.048 2.521 0.928 0.982 0.116 

Silver 5000 OZ futures index (CMX) OBV(10, 25, 0, 0, 25) 7649 0.044 1.886 0.030 1.293 1.000 1.000 0.386 

Copper, grade a cash spot index (LME) MA(10, 75, 0, 0, 5) 2156 0.103 3.801 0.103 3.801 0.578 0.578 0.066 

Gold bullion spot index (LBM) MA(30, 250, 0, 0, 25) 2425 0.057 4.562 0.057 4.562 0.636 0.912 0.076 
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Table 5 (cont.). Bootstrapped test results for the technical rules amongst the precious metal market futures 

and spot indices with transaction costs adjustment 

Daily return Old best rule returnb 
 Best  rulea Orderc 

(%) t-value (%) t-value 
SPAd RCe 

Nominal 
RCf 

London palladium free market spot index MA(50, 100, 0, 0, 0) 566 0.101 3.851 0.007 0.274 0.554 0.618 0.034 

London platinum free market spot index MA(100, 125, 0, 0, 25) 2393 0.051 2.802 0.051 2.802 0.964 0.990 0.340 

Silver spot index (LBM) MA(2, 30, 0, 0, 50) 2448 0.050 2.221 0.050 2.221 0.996 1.000 0.496 

Notes: a“Best rule MA” denotes the moving average with five parameters (n, m, b, d, c), where n-days is the short-term horizon line; 

m-days is the long-term horizon line; b is the filter rate (%); d-days is the time delay; and c-days are the holding days. b“Old best 

rule return” refers to the return of the best rule without institutional adjustments, as indicated in Table 2. c“Order” refers to the loca-

tion of the best universal rule. d“RC” refers to the p-value for the White (2000) “reality check” to the full universe. e“SPA” refers to 

the p-value for the Hansen (2005) ‘superior predictive ability’ test to the full universe. f“Nominal RC” refers to the p-value obtained 

by applying the “reality check” to the best rule only, without relating it to the full set of rules. 

Conclusions 

We carry out a detailed investigation in this study of 
the profitability of technical analysis amongst ten 
precious metal market indices over the period of 
1968-2009. We employ the bootstrap results of the 
White (2000) “reality check” and the Hansen (2005) 
“superior predictive ability” test in order to deter-
mine whether any profitable trading rule exists, 
drawing from the “universe” of technical strategies 
proposed by Sullivan et al. (1999). Our empirical 
findings first indicate that, when non-synchronous 
trading bias and transaction costs are ignored, the 
best strategies in our sample are provided by short-
window “moving averages” rules, which are Palla-
dium futures index (NYM) (1, 2, 0, 0, 0) and Lon-
don palladium free market spot index (1, 2, 0, 0, 0). 
The accompanying profits of these rules are signifi-
cant according to the traditional test employed by 
Brock et al. (1992) and Bessembinder and Chan 
(1995). Furthermore, the results, remain valid in, are 
palladium futures index (NYM) and London palla-
dium free market spot index, even after controlling 
for data snooping bias through the bootstrap reality 
check and superior predictive ability test. 

Second, we find that when a one-day lag scheme is 

implemented to account for non-synchronous trading 

bias, there are changes in the optimal trading rules, 

but they are similar in trading profits. Furthermore, 

there is different result with ignoring non-

synchronous trading bias, no indices through the 

bootstrap tests in both the White (2000) reality 

check and the Hansen (2005) superior predictive 

ability test. Third, when transaction costs are 

taken into account, there entails a similar effect in 

trading profits as non-synchronous adjustment 

dose. As a result, both, the reality check and the 

superior predictive ability test, reject the existence 

of economically profitable rules in all of the pre-

cious metal market indices. The empirical evi-

dence seems suggest the relative magnitude of 

noises surrounding the true efficacy of technical 

analysis rank most from data snooping and the 

next from both non-synchronous trading and 

transaction costs.  

This study brings together powerful bootstrap tests, 

along with two institutional adjustments (non-

synchronous trading and transaction costs) to ascertain 

the profitability of technical analysis in ten precious 

metal market indices. The empirical results indicate 

that these adjustments have an enormous impact on the 

performance of the technical analysis rules. Indeed, 

our results clearly show that economic profits are 

unlikely to be earned from the use of technical analysis 

within these particular markets. 
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