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Andrei Salem Gonçalves (Brazil), Aureliano Angel Bressan (Brazil) 

Ruin probability: a flexible approach for measuring portfolio risk 

Abstract 

The paper provides a simple and flexible numerical based approach to measure portfolio risk. It measures the chance of 

one or more specific undesirable financial events, defined as Ruins, for a predetermined investment horizon. The 

method is based on the Ruin theory and is flexible enough to provide information about several financial events of 

concern at the same time and still relate them. The authors also conduct a simulation analysis using Bootstrap and 

Monte Carlo methods, in order to exemplify how this approach is able to solve some practical risk management prob-

lems. 

Keywords: risk measures, portfoloio risk, Ruin probability.

Introduction

Several researchers tried to understand what exactly 
risk means and how to control it efficiently in financial 
markets. Wood Jr. (1964) proposed that risk may be 
defined as either the chance or the uncertainty of a 
loss. Later, the word “risk” received new connotations, 
such as changes in values between two dates. How-
ever, Artzner et al. (1999) argued that because risk is 
related to the variability of the expected value of a 
position, it is better to relate risk only with the future 
value of that position. Therefore, an exact and also 
comprehensive definition of risk leaves us with the 
notion that this concept is too broad to be represented 
by only one definition. 

For instance, in the context of portfolio risk man-
agement, Markowitz (1952) was the first who for-
mally define risk as the standard deviation of portfo-
lio’s returns. Several other studies came up with 
new measures of portfolio risk. Some of the most 
used portfolio risk measures in the financial market 
are the Beta1, defined by the capital asset pricing 
model (CAPM), the implied volatility from the 
Black-Scholes (B-S) model2, the portfolio Value at 
Risk3 (VaR) and the portfolio expected shortfall4.

Regardless of the existence of alternative risk defini-
tions and measures, they are not mutually exclusive. In 
other words, the existence of one risk measure does 
not invalidate the usage of others as complementary 
risk measures for a specific investment. Actually, the 
risk management industry uses several alternative 
models to generate a higher number of measures in 
order to efficiently access and control portfolio risk. 

Actuarial risk measures are related to financial risk 

measures in the sense that both try to measure the risk 

of loss in a portfolio. Furthermore, Shyriaev et al. 

(1999) argue that it is impossible nowadays to con-

sider the theory and practice of insurance separated 

                                                     
 Andrei Salem Gonçalves, Aureliano Angel Bressan, 2010.

1 Portfolio (or asset) sensibility to the market. The CAPM was devel-
oped by Sharpe (1964). 
2 The Black-Scholes model was first introduced by Black and Scholes 
(1973) and then improved by Merton (1973). 
3 Portfolio maximum loss expected for a certain significance level.  
4 This is the portfolio expected loss conditional on a specific VaR. 

from the practices and the theory of finance and in-

vestment in securities. This leads us to believe that 

actuarial methodologies may be useful in measuring 

asset portfolio risk.  

In this perspective, the main objective of this article 

is to introduce a flexible approach for measuring 

asset portfolio risks based on an actuarial concept, 

the Ruin probability5. The risk measure, we propose 

here, is also defined as the Ruin probability and it 

measures the chance of occurrence for one or more 

specific undesirable financial events related to port-

folio’s future value, defined as Ruins, for a prede-

termined investment horizon. 

We create neither a new numerical simulation ap-

proach nor a new backtest methodology. Instead, we 

applied a widely used concept of risk for insurance 

surplus (Ruin probability) to asset portfolio risk man-

agement. By doing so, we make possible to specify as 

many events of concern as desired and evaluate the 

probabilities of these events, as independent risk 

events and also as correlated events, in an alternative 

approach to the widely used statistical measures of 

standard deviation and semivariance, underlying the 

classical measures of risk mentioned above. 

In addition to the definition of risk, related to the 

future value of a position, Artzner et al. (1999) also 

presented four desirable properties6 for measures of 

risk and call the measures satisfying theses properties 

as “coherent measures of risk”. Nevertheless, the 

definition of risk, used here to develop the Ruin 

probability, is associated with the idea of a probabil-

ity of a specific event of concern (a severe loss, for 

example) and, therefore, is related to the concept of 

risk presented by Wood Jr. (1964). As a conse-

                                                     
5 This concept of risk is used by actuaries in the context of insurance 

companies. The Ruin probability, in this scenario, is the probability that 

the insurer’s surplus become negative at some point of time (for a 

defined or infinite horizon). The concept is developed by the Ruin 

theory, which is concerned with the level of an insurer’s surplus for a 

portfolio of insurance policies. As more detailed references, see Kaas et 

al. (2001), Dickson (2005), and Boland (2007). 
6 They are: translational invariance, subadditivity, positive homogeneity and 

monotonicity.
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quence, our measure does not necessarily satisfies 

the four properties proposed by Artzner (1999), 

since the definition of risk here used is different than 

the proposed by his work. Measures of probability of 

events, such as the Ruin probability, might present the 

second and the last desirable properties (subadditivity

and monotonicity) of a “coherent measure of risk”, but 

cannot present the other ones (translational invariance

and positive homogeneity)1.

This paper is structured in five more Sections. Section 

1 contains a description of the theoretical background, 

which must be used to evaluate the Ruin probability. 

Section 2 presents the hypothetical situation that works 

as our motivation for the simulated analysis presented 

in this paper. Following, Section 3 gives an overall 

description of the data collected and briefly explains 

the numerical simulation methodologies that were 

used for the simulation analysis. Section 4 presents the 

results of the practical analyses and it is divided into 

the backtest for the numerical approaches and the final 
results. Finally, the last Section presents some conclu-
sions about the possibilities and relevance of our 
method. 

1. Theoretical background 

Consider a portfolio of n assets during the future in-
vestment horizon [0, H]. The portfolio’s value at time t

is a random variable defined as Pt  t = [0, H] with a 
probability density function f (Pt) which also depends 
on t. Still, consider a portfolio risk manager, who is 
concerned about N possible undesirable events, related 
to the portfolio’s value during the investment horizon, 
which are defined as Ruins. As a consequence, the 
Ruins add risk to the portfolio and must be analyzed. 

Then, define N dependent Bernoulli random variables 
conditioned on the probability density function for 
the portfolio’s value during the investment horizon, 
Ri [f (Pt)], i = 1,2,…,N and t = [0, H], which represent 
the possible Ruins for the portfolio: 

.,0horizoninvestmentfor theoccurnotdoesRuin theif0,

,0horizoninvestmentfor theoccursRuin theif,1

Hthi

Hthi
PfR ti     (1) 

The risk manager must be aware the probability of 

occurrence for each Ruin.1This implies that he must 

somehow evaluate P [Ri = 1|f (Pt)]  i = 1,2,…, N

and t = [0, H], which are defined as the Ruin prob-

abilities2. If f (Pt)  t = [0, H] is known, then it is 

possible to calculate the Ruin probabilities. Unfor-

tunately, as f (Pt)  t = [0, H] represent several fu-

ture probability density functions of a complex port-

folio, this is not the case. 

Now, consider that the portfolio’s value is divided 

into n assets such that the portfolio’s total value is 

the sum of the assets’ values: 

n

i

tit SP
1

, ,       (2) 

where Si,t is the value of asset i at time t. As a 

consequence, the probability density functions of 

Pt depends on the sum of the values of the assets 

that compose the portfolio: 

n

i

titt SPfPf
1

, ,      (3) 

where i,t, i = 1,2,…, N and t = [0, H] are inde-

pendent random variables. 

In order to estimate P [Ri = 1| f (Pt)], assumptions 

about f (Pt) must be made or, otherwise, assumptions 

about changes in each Si,t. Nonetheless, portfolios are 

composed by many different kinds of assets and, thus, 

                                                     
1 The proof for this statement is presented in the Appendix. 
2 The Ruin probability of ri is P [Ri = 1| f (Pt)]. 

no model is likely to work for all types of assets. For 

instance, we assume that all assets in the portfolio are 

public traded stocks3.

Then we used a widely accepted multiplicative 

model for changes in stock prices such that: 

,lnln ,,, tititti SS    (4) 

where t  t = [0, H] are independent random 

variables. 

If we assume a distribution for t and a static or dy-

namic model for the parameters of the distribution, 

then we may simulate the process described in equa-

tion (4) for each portfolio’s asset and estimate the fu-

ture f (Pt)  t = [0, H]. Using the estimated f (Pt), it is 

possible to calculate P [Ri = 1| f (Pt)]  i = 1,2,…, N

and t = [0, H]. Furthermore, it is also possible to 

evaluate P [E |f (Pt)]  t = [0, H], where E represents 

any event of concernment that relates two or more 

Ruins4. By doing this, the risk manager is able to esti-

mate the Ruin probability for each specific event of his 

concern. 

2. An hypothetical analytical situation  

Let’s assume that at the beginning of September 2010 

a blue-chip fund is considering to create an equally 

weighted portfolio, composed by the preferred stocks 

of the 5 Brazilian companies with the greatest market 

                                                     
3 The model may be generalized for portfolios, composed by different types 

of assets such as derivatives, interest rates and commodities by making 

different assumptions about changes in prices of alternative assets. We rely 

on a unique type of asset in order to better explain the model’s idea. 
4  Event such as “Ri = 1 Rj = 1”, “Ri = 1 Rj = 1” or “Ri = 1 |Rj = 1”. 
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capitalization listed in the BM&FBovespa1. The man-

ager will rebalance the portfolio after one year and, 

therefore, he is concerned about the occurrence of two 

specific undesirable events (Ruin I and Ruin II) for the 

investment horizon of one year: 

Ruin I – the portfolio value decreases by k% 
before the end of the investment horizon; 

Ruin II – the portfolio value do not increase by 
the end of the investment horizon.  

The simulated analysis of this paper is constructed to 

solve the problem presented in this hypothetical 

situation (to measure the risk of both Ruin I and Ruin 

II). Despite of the simplicity of the portfolio struc-

ture, the analysis intends to illustrate how the ap-

proach for measuring the Ruin probability is flexible 

enough to deal with different risk events as separated 

or dependent risk factors.  

3. Data structure and numerical simulation 

methods 

3.1. Data structure. For the simulated analysis, data 

on preferred stocks of the 5 top Brazilian companies, 

ranked by market capitalization2, were collected from 

the Economatica3 database for the sample period 

ranging from January 1, 2000 to August 31, 2010.

The data represents the adjusted daily opening price 

such that for each stock the returns were calculated 

considering the difference in the natural logarithm 

of the opening prices of two subsequent market 

days. The whole analysis was performed using two 

different softwares, Microsoft Excel 2007 and the R 

statistical package. 

3.2. Numerical simulation methods. To evaluate the 

Ruin probability for the hypothetical situation de-

scribed in the Section 2, it was necessary to perform 

simulations of the portfolio returns for the following 

year. In order to do so, three alternative simulation 

approaches were considered for the stocks that com-

posed the portfolio. 

3.2.1. Bootstrap simulation. The Bootstrap is a data-

based non-parametric simulation method and the 

details for the methodology can be found in Efron 

and Tibshirani (1993). For our analysis, we used the 

equation (4) for each stock and simulated future 

values of i,t using the data collected and considering 

that all observed returns had the same probability of 

happening. 

                                                     
1 This is the Brazilian stock exchange. More information about it can be 

obtained at http://www.bmfbovespa.com.br/en-us/home.aspx?idioma=en-us. 
2 The top five market capitalization Brazilian companies was obtained at 

the official website of the BM&FBovespa and the top five companies 

were, respectively: Petróleo Brasileiro S.A (Petrobras), Vale S.A, Itaú 

Unibanco Banco Múltiplo S.A, Companhia de Bebidas das Americas 

(AmBev) and Banco Bradesco S.A. 
3 Economatica is a financial database that contains a wide coverage of 

the Brazilian stock market. 

3.2.2. Unconditional Monte Carlo simulation. We 
performed a Monte Carlo simulation considering that 
the i,t in equation (4) are independent and normally 
distributed with constant parameters for the normal 

distribution (  and ). In other words, we assumed 

a geometric Brownian motion4 (GBM) for the price of 
each stock and we consider that the parameters of the 
GBM are constant and unconditional over time. Then, 
recovering the definition of equation (4), with a slight 
difference for the error term such that: 

,lnln ,,, tititti uSS    (5) 

where ui,t ~ N(µi· t , i· t) and are i.i.d. for the 
same stock i.

The parameters µi and i are respectively the mean 

and the standard deviation of the observed returns5

of the stock i. We also considered the cross-section 

correlation structure of the portfolio assets6.

3.2.3. Conditional Monte Carlo simulation. This is 

also a Monte Carlo simulation considering a GBM 

for the price of each stock and the cross-section corre-

lation structure of the portfolio assets. Nevertheless, 

the  is considered to be conditional over time. That is, 

i,t depends on the stock i and time t. The conditional 

process considered is the generalized autoregressive 

conditional heteroskedasticity (GARCH) model, 

proposed by Bollerslev (1986). We used a GARCH 

(1,1), such that for each stock we have: 

2

,2

2

1,10

2

, tititi r ,     (6) 

where ri,t is the return of stock i at time t.

3.2.4. Further issues. We do not pursue general or 

further descriptions of the numerical approaches, 

but the general methodology for simulating portfo-

lios’ returns, using these approaches, can be found 

in Jorion (2001) and Christoffersen (2003). 

Also, there are three arbitrary general rules chosen 
to implement the simulations: 

the number of trading (market) days in one year 

and one month are, respectively, 252 and 21 days; 

for each simulation, a DataWindow of K years 

was selected7 and the respective database for 

the DataWindow chosen was used to proce-

                                                     
4 The Brownian motion is the limit of the random walk model, first 

proposed by Bachelier (1900), translated to English by Cootner (1964), 

and the geometric Brownian motion was proposed by Samuelson (1965) 

as an adjustment of the linear Brownian motion to consider some prop-

erties of stock prices. 
5 ri,t = ln(Si,t+1) - ln(Si,t).
6 In order to consider the cross section correlation structure of the 

portfolio assets we used the Cholesky decomposition. Details of this 

method can be found in Jorion (2001). 
7 The DataWindow represents the number of years of sample that are 

going to be used for the simulation approach. We used two alternative 

DataWindows, 5 years and 10 years. 
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dure the simulation approach. Furthermore, 

for each simulation the database used con-

tained K·252 daily returns for five different 

stocks, with the following general structure 

for the database: 

52524252325222521252

5242322212

5141312111

Database

,K,K,K,K,K

,,,,,

,,,,,

rrrrr

rrrrr

rrrrr

,

where ri,j represents the return of stock i at day j;

for each simulation approach and DataWindow 

chosen, 50,000 simulations were run. 

4. Results 

In order to evaluate the probabilities of Ruin I and 

Ruin II it is necessary to verify if the numerical 

models, used to implement the simulations, were 

accurate for approximating the distribution of the 

portfolio’s returns. Therefore, before choosing the 

model, we performed backtests for all of the three 

proposed simulation approaches. We did that by 

using the last five months of data1 for the back-

tests. 

4.1. Backtesting procedure. There are several 

alternative backtesting procedures to deal with 

problems like these. Kupiec (1995) argued that 

formal statistical procedures relying in occurrence 

of events of low probability2 require large sam-

ples to produce a reliable assessment of a model’s 

accuracy. Additionally, as we are usually con-

cerned about several undesirable events for the 

implementation of the Ruin probabilities, it is 

necessary to use a backtest which allows analyz-

ing the performance of the simulation method for 

the entire distribution. We deal with these prob-

lems by using the widely accepted method, pro-

posed by Berkowitz (2001) mainly because: 

it backtests the entire distribution instead of 

just the event of interest and, as a conse-

quence, it enables the backtest even when the 

sample used for the backtest is restricted; 

according to tests performed by Berkowitz (2001), 

it is the most powerful methodology for back-

testing a simulated distribution of returns. 

As the main propose of our study is neither to 

evaluate different simulation approaches nor to 

analyze backtesting methodologies, we presented 

a brief description of the backtest performed. 

                                                     
1 The backtest period ranged from April 1, 2010 to August 31, 2010. 
2 As the Ruin can be defined as any financial event of concernment, this 

might be the case of our approach in some situations. 

To implement the backtests, we, first, computed the 
empirical cumulative distribution function (ECDF) of 
the portfolio daily returns for each simulation ap-
proach3 and DataWindow. Then, for each backtest we 
used the ECDF to calculate the cumulative probability 
of each actual daily return of the backtest sample. This 
gives a vector of probabilities, which Rosenblatt 
(1952) shown, under the assumption (null hypothesis), 
that the simulated distribution is the right distribution, 
the probabilities must be independent and uniformly 
distributed the [0,1] range. Then, we used the inverse 
of the standard normal distribution function to trans-
form the probabilities. Finally, according to Berkowitz 
(2001), under the null, the transformed probabilities 
must be independent and follow a standard normal 
distribution. 

To perform the test in order to verify if the trans-

formed probabilities were independent and followed 

a standard normal distribution, we used the follow-

ing equation: 

ttt wzz 1 ,     (5)

where zt is the transformed probability at time t, is
the mean of the transformed probability,  is the 
first order autoregressive coefficient and wt is the 
error of the model. 

Then, we defined the log-likelihood as a function 
of the three unknown parameters, L( , 2, ),
where 2 is the variance of the error. The null 
implies that  = 0,  = 0 and 2 = 1. Therefore, we 
used the likelihood ratio (LR) test to test the null 
hypothesis. The likelihood ratio test statistic was 
defined as: 

ˆ,ˆ,ˆ0,1,02 2LLLR .    (6) 

Under the null hypothesis, the test statistic fol-

lows a 
2
(3).

Table 1 presents the p-values of the likelihood 
ratio tests for each simulation approach and 
DataWindow considered. The results indicated 
that the conditional Monte Carlo simulation ap-
proach was the only one that provided a reliable 
forecasted distribution for the backtest period, 
using a significance level of 10%. It is also no-
ticeable that the 10 years DataWindow provides a 
better sample comparing to 5 years DataWindow 
in order to perform the simulations for all the 
three simulation methods considered. In summary, 
the backtesting results indicate that the best simu-
lation approach is to use the conditional Monte 
Carlo simulation with a DataWindow of 10 years, 
under the assumptions used in our study. 

                                                     
3 For the conditional Monte Carlo simulation there is more than one ECDF 

because the ECDF is a function of the volatility and according to this method 

the volatility is conditional. Nevertheless, the idea for the backtes is similar, 

but there is one ECDF for each day of backtest. 
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Table 1. Simulation approaches backtest 

Simulation approach

DataWindow
Bootstrap 

Unconditional 

Monte Carlo 

Conditional 

Monte Carlo 

5 years 0,0050 0,0000 0,2431 

10 years 0,0729 0,0009 0,4611 

Note: The tests are performed using the specification zt –  = 

= ·( zt-1 – ) + wt, where zt is the transformed probability at 

time t,  is the mean of the transformed probability,  is the first 

order autoregressive coefficient and wt is the error of the model. 

The null hypothesis states that  = 0, = 0 and 2 = 1. 

The backtest also indicates that the Bootstrap 

simulation using the DataWindow of 10 years is 

an appropriate approach at a 5% significance level 

(but not at 10%) and that all other simulation ap-

proaches, here considered, are not statistically 

meaningful. 

4.2. Ruin probabilities. The final simulations are 

performed using both the conditional Monte Carlo 

and the Bootstrap simulation. The backtesting indi-

cated that the conditional Monte Carlo simulation 

generated the most accurate forecasted distribution 

for daily returns. However, the bootstrap results are 

also presented to exemplify a possible bias in the 

Ruin probability estimation due to the utilization of 

the wrong simulation model. 

In Section 2, we defined Ruin I and Ruin II as the 

events of concern. Although, the probabilities of 

Ruin I and Ruin II are interesting to understand the 

risk of each event, it is still necessary to quantify the 

relation between them. In order to do so, we also 

analyzed the event “Ruin I  Ruin II”. Moreover, 

using the three events already defined, we also esti-

mated the probabilities of two other events of inter-

est: “Ruin I  Ruin II” and “Ruin II | Ruin I”. We 

did that relying on two basic probability rules: 

IRuinPIIRuinIRuinP

IIRuinIRuinPIIRuinP ;

IRuinP

IIRuinIRuinP
IRuinIIRuinP .

Table 2 provides the Ruin probabilities at Septem-

ber 1, 2010 for all the five events of interest for 

both DataWindows and the simulation approaches 

considered (Bootstrap and conditional Monte 

Carlo). The results indicate that (for the specific 

situation of the analyses) the Bootstrap simulation 

method overestimates the Ruin probabilities of 

Ruin I and Ruin II. It is also noticeable that the 

simulations using the DataWindow of 5 years gen-

erate higher Ruin probabilities. This is due to the 

financial crises occurred between 2008 and 2009 

(stocks’ returns for this period gains special weight 

as we use smaller DataWindow). 

The analysis of the Ruin probabilities of Table 2 is 

not interesting by itself, since there is no special 

concern in the equally weighted portfolio of the 

five biggest Brazilian blue chips (it is just a hypo-

thetical portfolio to exemplify the method). On the 

other hand, it is outstanding how the proposed 

methodology was able to relate all risks of interest 

in a couple probability measures. 

For instance, by analyzing the results of the best 

simulation approach (conditional Monte Carlo simu-

lation using a DataWindow of 10 years), the blue 

chip fund manager is able to verify that for the pro-

posed portfolio the Ruin probability of a loss higher 

than 20% before the end of one year is as high as 

15,69%. Nevertheless, the probability of a loss 

higher than 30% is much lower (4,72%). Also, the 

probability of no gain after one year is 18,35%. 

These results may determine whether or not the 

manager is going to invest in such a portfolio. 

Table 2. Estimated Ruin probabilities 

Panel A. Bootstrap simulation 

Ruin probabilities 
DataWindow k% 

Ruin I Ruin II Ruin I  Ruin II Ruin I  Ruin II Ruin II | Ruin I 

10% 53,84% 25,01% 54,79% 24,07% 44,70% 

20% 28,75% 25,01% 34,73% 19,03% 66,19% 

30% 13,00% 25,01% 26,92% 11,10% 85,36% 

40% 4,44% 25,01% 25,19% 4,27% 96,13% 

5 years 

50% 1,06% 25,01% 25,01% 1,06% 100,00% 

10% 44,86% 19,97% 46,18% 18,66% 41,59% 

20% 19,77% 19,97% 26,35% 13,39% 67,73% 

30% 6,98% 19,97% 20,82% 6,13% 87,84% 

40% 1,76% 19,97% 20,01% 1,72% 97,84% 

10 years 

50% 0,27% 19,97% 19,97% 0,27% 99,25% 
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Table 2 (cont.). Estimated Ruin probabilities 

Panel B. Conditional Monte Carlo simulation 

Ruin probabilities 
DataWindow k% 

Ruin I Ruin II Ruin I  Ruin II Ruin I  Ruin II Ruin II | Ruin I 

10% 48,07% 22,74% 49,57% 21,24% 44,19% 

20% 21,67% 22,74% 29,35% 15,05% 69,47% 

30% 8,16% 22,74% 23,73% 7,17% 87,92% 

40% 2,28% 22,74% 22,82% 2,21% 96,67% 

5 years 

50% 0,43% 22,74% 22,75% 0,43% 98,16% 

10% 40,73% 18,35% 42,21% 16,86% 41,40% 

20% 15,69% 18,35% 23,06% 10,98% 69,98% 

30% 4,72% 18,35% 18,85% 4,22% 89,44% 

40% 0,99% 18,35% 18,38% 0,96% 96,96% 

10 years 

50% 0,12% 18,35% 18,35% 0,12% 100,00% 

Notes: The Table presents the estimated Ruin probabilities for the five events of interest: “Ruin I”, “Ruin II”, “Ruin I  Ruin II”, “Ruin I 

Ruin II”, “Ruin II | Ruin I”. The probabilities are estimated using two alternative simulation approaches (Bootstrap and Conditional Monte 

Carlo) and two Data Windows (5 years and 10 years). Ruin I is defined as the event in which the portfolio value decreases by k% before the 

end of the investment horizon and Ruin II is the event in which the portfolio value do not increase by the end of the investment horizon. We 

evaluate the probabilities using k% = 10%, 20%, 30%, 40% and 50% and the investment horizon of one year. 

Conclusion

The existing portfolio risk measures are important 

for the risk management industry in order to effi-

ciently access and control the portfolios risk. On the 

other hand, each measure is specific for one kind of 

risk. For instance, the Beta of the CAPM is a meas-

ure of the portfolio market sensibility and the value 

at risk is a measure of extreme high (and unlikely) 

losses.

Although, the existing risk measures are impor-

tant in determining specific risk factors, they fail 

in providing flexible analysis of events in the 

sense that it is possible that the event of concern 

for the manager is not related to the available risk 

measures. The contribution of this paper is to 

provide a simple approach that deals with this 

issue. In doing so, with the adoption of the Ruin 

probability approach here proposed, the risk man-

agers are able to specify in a comprehensive man-

ner one or more events of interest and even to access 

their conditional and unconditional probabilities. 

Despite its simplicity, the hypothetical example ana-

lyzed in this paper is a clear situation in which the 

traditional risk measures would fail in providing the 

risk manager with relevant information about his con-

cernments. Furthermore, the Ruin probability was able 

to solve the proposed problem especially because of its 

flexibility. 

Finally, the approach may be further investigated with 

real portfolios, which usually present a more complex 

assets structure. Also, the problems may be expanded 

to take into account assets purchase decisions. The 

manager may also specify a specific event of interest 

and analyze the change in the portfolio’s Ruin prob-

ability due to the purchase of the specific asset of in-

terest. Finally, the results we present here motivate 

several real-world risk management applications 

which we leave for future research. 
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Appendix

Consider two portfolios with values at time t defined respectively by Xt and Yt, such that t might be a specific time or a 

period and that X0 = Y0. Still, assume that Xt and Yt are random processes and that we are concerned about the event Zt < A,

where Zt is the value of a generic portfolio at time t and A is a know value, which might be an absolute value or a frac-

tion of Z0. The Ruin probability is, therefore, P (Zt < A).

We shall prove that the Ruin probability presents two of the properties of a “coherent measure of risk” (subadditivity

and monotonicity) and that it is impossible for the Ruin probability to present the other two properties (translational 

invariance and positive homogeneity), since it is a measure of probability. 

1. Subadditivity. 

Applied to the Ruin probability, subadditivity implies that the following inequation is true: 

AYPAXPAYXP tttt
.

The event “Xt + Yt < A” implies that “Xt < A  Yt < A”, but the opposite is not true. Therefore, we have that: 

AYAXPAYXP tttt
.                     (A1) 

Now, let’s consider the following probability rule and apply Inequetion (A1) to it: 

AYAXPAYPAXPAYAXP tttttt
,

AYAXPAYPAXPAYXP tttttt
.                   (A2) 

As P(Xt < A Yt < A) 0, inequation (A2) also implies that: 

AYPAXPAYXP tttt
.

2. Monotonicity. 

Applied to the Ruin probability, monotonicity implies that if Xt > Yt is true, then the following inequation is also true: 

AYPAXP tt
.

Assuming that Xt > Yt is true, we have that if Xt < A it is certain that Yt < A:

)1(

1

B

t

tt
tt

AXP

AXAYP
AXAYP .

The result of equation (B1) is: 

AXPAXAYP ttt
.                       (B2) 

Now, consider the following probability rule and apply equation (B2) to it: 

AYAXPAYPAXPAXAYP tttttt
,

AXPAYPAXPAXAYP ttttt
,

AYPAXAYP ttt
.                        (B3) 

Consider two events E and F. We know that the probability of occurrence for the event E is equal or less than the prob-

ability of occurrence for the event “E F”. Now, assume that E = “Xt < A” and that F = “Yt < A”. The result is: 

AYAXPAXP ttt
.                       (B4) 
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Then, substituting equation (B3) into inequation (B4) leaves: 

AXPAXP tt
.

3. Translational invariance.

Consider an initial amount of 0 that is invested and its future value is determined by 0·y, where y is a positive (deter-

ministic or random) value. The translational invariance applied to the Ruin probability states that: 

00 AXPAyXP tt
.                       (C1) 

Observe that P (Xt < A) is a probability measure and that 0 is an amount of money. As a consequence, if equation (C1) 

is true, then P (Xt + 0·y < A) might present negative values or even values above 1 and this cannot be true. 

4. Positive homogeneity 

Positive homogeneity applied to the Ruin probability states that P ( ·Xt < A) = ·P (Xt < A) for all 1. Observe that if 

positive homogeneity is true, then P ( ·Xt < A) might present values above 1 and as P ( ·Xt < A) is a probability meas-

ure, this cannot be true. 
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