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Oliver Musshoff (Germany), Norbert Hirschauer (Germany) 

A survey of simulation-based methods for pricing complex  

American type options 

Abstract 

This paper gives an overview of simulation-based methods which have been developed for the valuation of “complex” 

American type options that cannot be valued analytically. The authors focus on one especially promising approach 

which we call “bounded recursive stochastic simulation” (BRSS) after having stripped off some time consuming but 

dispensable working steps. Then, we test the BRSS-approach by comparing it with three other simulation-based meth-

ods. Because of its superiority with regard to accuracy, computational costs, and flexibility, the paper describes the 

BRSS-approach in detail, thus, providing scientific know-how for efficient numerical option pricing.  

Keywords: numerical option pricing, real options, Monte Carlo simulation, recursive stochastic simulation, early-exercise 

frontier. 

Introduction  

Options are traded not only on stocks but also on indi-
ces, currencies, bonds, natural resources (e.g., copper, 
oil) or agricultural commodities. The owner of an op-
tion is – independent of the development of the under-
lying asset – entitled to buy or sell that asset at a fixed 
price in the future. With American type option con-
tracts, option owners are allowed to exercise their con-
tractual rights at any date during the contracted time 
interval. Due to the great practical relevance of option 
pricing, and fostered by the bestowal of the Nobel 
Prize to Black, Scholes and Merton for their develop-
ment of modern option pricing theory, the determina-
tion of the value of an option in accordance with the 
optimal early-exercise strategy has attracted consider-
able scientific efforts. 

The main difficulty in practical option pricing is 
caused by the fact that closed form analytical solu-
tions are only available for very simple valuation 
problems (e.g., European type options) or special 
cases. Even for valuing simple American style op-
tions one has to resort to numerical procedures such 
as lattice approaches (cf. Hull, 2000, ch. 16). But 
lattice approaches (e.g., binomial trees) themselves 
are restricted to a limited category of valuation prob-
lems. For one thing, they lack sufficient flexibility 
with regard to the form of stochastic processes and 
the number of stochastic variables. Furthermore, they 
become extremely cumbersome with larger problems. 
Referring to these valuation difficulties, we hereafter 
call options “complex” if they can neither be priced 
analytically nor through lattice approaches, nor 
through the standard stochastic simulation procedure 
known from European type option pricing. 

To give a few examples: (1) lattice approaches can-
not be used to value a bond option whose underlying 
follows a complex stochastic process, i.e., non-
Markov process; (2) they are equally unsuited to 
value path-dependent (Asian) options, or stock op-

                                                      
 Oliver Musshoff, Norbert Hirschauer, 2010. 

tions in the case of a stochastic variance (GARCH-
process). The latter makes the problem a complex 
multiple stochastic variable problem even though 
the underlying may follow a Geometric Brownian 
Motion (GBM); (3) another example comes from the 
sphere of entrepreneurial investment opportunities 
which are often labelled “real options” (see Dixit 
and Pindyck, 1994)

1
. With regard to flexible invest-

ment decisions, not only multiple (stochastic) state 
variables and correlations between state variables 
but also non-GBM processes for these state vari-
ables are common problems which need to be con-
sidered (see Lund, 1993)

2
. 

Stochastic simulation procedures can handle alterna-
tive stochastic processes, multiple stochastic vari-
ables, correlations, etc. easily (cf. Boyle, 1977; 
Broadie and Glasserman, 1996). While being thus 
applicable to European type option pricing, stochas-
tic simulation is not directly applicable to American 
type option pricing. The problem with American 
options is that with a simple forward moving simu-
lation for the path of the underlying asset, it is not 
clear at potential early-exercise dates whether wait-
ing or exercising represents the optimal strategy. 
That is, prior to option valuation, a stochastic dy-
namic decision problem of determining the optimal 
early-exercise strategy needs to be solved. This is 

                                                      
1 Since investments are partly irreversible as well as characterized by 

uncertain future returns, potential investors run a risk and enjoy flexibil-

ity at the same time. They have, for instance, the choice to carry out 

risky investments at different dates. Hence, an analogy is claimed 

between an investment opportunity (“real option”) and an American 

type call option. Without needing to discuss the adequateness of theo-

retical assumptions, one can state that the “real options” approach has 

generated “added value” by making financial option pricing methods 

available for the valuation of flexible investment opportunities which 

represent stochastic dynamic optimization problems as well. 
2 Recent research shows that the kind of stochastic process has a deci-

sive influence both on option prices and critical early-exercise values 

(see Odening et al., 2005). The identification of stochastic processes can 

be based on statistical test procedures. For example, unit-root tests can 

be used for testing whether a stochastic variable follows a random-walk 

(e.g., GBM) or a stationary process (e.g., mean-reversion process; see 

Pindyck and Rubinfeld, 1998). Time series models (e.g., ARIMA-

processes) can be identified using a Box-Jenkins test procedure (Box 

and Jenkins, 1976). 
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the reason why, for a long time, stochastic simula-
tion was not believed to be feasible for the valuation 
of American options (see Hull, 1993, p. 363; Briys 
et al., 1998, p. 62). Accordingly, it was as well 
deemed unsuitable for the valuation of real options 
(see Trigeorgis, 1996). 

However, due to the great flexibility of simulation-
based approaches with regard to the representation 
of stochastic processes, many successful attempts 
have been made, in the last one and a half decade, to 
embed stochastic simulation(s) in a more sophisti-
cated methodical framework to value American type 
options. The various methods are different with 
regard to their ways of determining the optimal 
early-exercise strategy before actually valuing the 
option. Their common feature is that they all simu-
late the stochastic development of one or several 
state variables. Some of these valuation methods 
provide accurate results and are relatively simple to 
use. Yet, the economic literature on simulation based 
option pricing remains highly fragmented and hard to 
access, and what it lacks is synthesis. Thus, the poten-
tial of stochastic simulation for the valuation of Ameri-
can options – be they complex financial options or real 
options – is still not fully acknowledged (see Hull, 
2000, p. 408). While Glasserman (2004, ch. 8) tries to 
mitigate this problem by a brief description of different 
simulation based methods, an exhaustive and system-
atic overview as well as guidance regarding the selec-
tion of practical valuation procedures for different 
situations is still missing.  

With a view to this fragmented literature back-

ground, the aim of the paper is to systematize the 

most meaningful simulation-based valuation meth-

ods. This provides scientific guidance with regard to 

successful numerical option pricing that is economi-

cal with resources such as programing effort and 

computational time. A result of the classification is 

that the integration of a stochastic simulation of the 

state variable(s) into a backward-recursive frame-

work of option pricing is a very flexible and intui-

tive way to price complex American type options. 

We are able to improve the most promising repre-

sentative of this class (Grant et al., 1997a) by strip-

ping some time consuming but dispensable steps 

from it. Aiming at providing scientific know-how 

for successful and efficient numerical option pricing 

and anticipating the favourable results with regard to 

accuracy and computational costs, the simplified 

approach which could be called “bounded recursive 

stochastic simulation” (BRSS) is demonstrated in 

detail. This includes a description of its capacities in 

situations with multiple stochastic variables. Fur-

thermore, four promising simulation-based ap-

proaches, including BRSS, are selected and tested. 

We use a straightforward Bermudan type option 

pricing problem (here: a stylised real option example 

with only few early-exercise dates) as a testbed in 

order to demonstrate that BRSS – compared to the 

other approaches with similar flexibility – provides 

correct results in a very efficient way.  

The paper is organized as follows. Section 1 outlines 
the overall valuation problem for American type 
options and introduces the notation. Given the im-
portant role stochastic simulation plays in more so-
phisticated methods of option pricing, Section 2
describes and classifies the different methods which 
have been developed up to now and which integrate 
– in one way or another – stochastic simulation into 
a more complex framework to value American type 
options. Section 3 describes the simple and straight-
forward BRSS method in greater detail, thus, pro-
viding the scientific knowledge for its practical ap-
plication. In Section 4, we compare and validate the 
BRSS and three alternative simulation based meth-
ods against the reference solution provided by the 
binomial tree method. The paper closes with an out-
look emphasizing the fact that more complex valua-
tion methods may be needed in some circumstances 
(the last Section). 

1. Problems in valuing American style options 

In the case of European type options there is only 

one question to be answered: what is the value of the 

option? The exercise strategy is known: the option 

should be exercised at the expiry date if the differ-

ence between the (market) value of the underlying 

asset and the strike price is positive. In the case of 

American type options, which can also be exercised 

before maturity, there is an additional question to be 

answered: at a given point in time, at which price of 

the underlying asset (i.e., critical early-exercise 

value) should the option be exercised? Due to its 

American type character we have to answer both 

questions for the real option which we use as dem-

onstration example. 

Firstly, we briefly present the principal problem of the 

pricing of American type (real) options: let I be the 

constant (investment) costs or purchase price of a real 

asset which generates a stochastic expected present 

value of investment cash flows V. The option to realize 

the investment is given in a period [0, T] at discrete 

potential exercise dates , ...,,1,0 . 

The number 1 of potential exercise dates is deter-

mined by the time between two potential exercise dates 

 ( /T ). Note that for the sake of more con-

venient formulation we define for the rest of this paper 

1 . The investment costs are sunk, once, the in-

vestment is carried out. We seek both the value of the 

investment option F0 and the critical early-exercise 

values V
*
 which would trigger an immediate invest-

ment at any given exercise date . According to tradi-

tional investment theory, the value of this investment 
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opportunity at any one exercise date equals the posi-

tive net present value i : 

),0max( IVi .
      

(1) 

Traditional investment theory recommends the exer-

cise strategy IV *
, i.e., the investment should be 

carried out as soon as there is a positive net present 

value (NPV). 

However, using the theory of option pricing, we 

know that the NPV-calculus only takes into account 

one part of the option value, namely the intrinsic 

value. But an option does not have to be exercised at 

date . Therefore, the option also has a continuation 

value f  which represents the discounted expecta-

tion value of the option, if it is not exercised at 

time , but the decision is put off until the next early-

exercise date 1 : 

)exp()(ˆ
1 rFEf .     (2) 

In this equation r denotes the continuously com-

pounded risk free interest rate, and Ê  the risk neu-

tral expectation operator. The use of the risk neutral 

expectation operator and the risk-free interest rate 

follows the risk-neutral-valuation principle (see Cox 

and Ross, 1976), or – if this principle isn’t applica-

ble – this procedure implies a risk neutral decision 

maker. The fact that we take into account both the 

intrinsic value and the continuation value expresses 

the fact that the decision is regarded as a choice 

between two alternatives: (1) immediate investment; 

and (2) delaying the investment decision. As a nor-

mative rule the investment option should be exer-

cised if the intrinsic value equals or exceeds the 

continuation value. Therefore, the value of the op-

tion is calculated as follows: 

),max( fiF .      (3) 

The binary decision problem between exercising and 

waiting can be understood as a specific stopping 

problem. Equation (3) is equivalent to the Bellman-

equation (see Bellman, 1957; Dixit and Pindyck, 

1994, p. 109). It can be shown that under certain 

regularity conditions
1
, there is an optimal exercise 

path which separates the stopping region from the 

continuation region. This exercise path or frontier 

consists of boundary values for the underlying 
*V  

                                                      
1 The regularity-conditions demand that: (1) the intrinsic value and the 

continuation value are monotone functions of the value of the underly-

ing; and that (2) the distribution function of the underlying in  + 1 will shift 

to the right (left) side, if the value in  increases (decreases), i.e., a positive 

persistence of the stochastic process (see Dixit and Pindyck, 1994, p. 129). 

which indicate the values in time, where a deci-

sion-maker is indifferent with regard to early-

exercise or continuation. In this case, the intrinsic 

value 
** )( iVi  must equal the continuation 

value 
** )( fVf  (identity- or value-matching 

condition): 

**
fi .

       
(4) 

Figure 1 (left) shows the graphs of the intrinsic 

value and the continuation value as functions of the 

expected present value of the investment cash flows 

for one potential exercise date  (equivalent to a 

non-dividend-protected American type call option 

on a dividend paying underlying
2
). A profit maxi-

mizing decision-maker should exercise an option 

immediately if 
*

VV . 

  I V
* V  

Intrinsic value i  

Option value F

Continuation 

value f  

i  

f  

F  

0 1 2   3   4   5=  

V
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Note: Depicted for a non-dividend-protected American call 

option with six potential exercise dates on a dividend paying 

underlying:  = 1. 

Fig. 1. Relationship between intrinsic value and continuation 

value (on the left) and exercise frontier (on the right)

Figure 1 (right) shows the entire critical early-

exercise path over time for an American call option 

with six potential exercise dates. One characteristic 

of the critical early-exercise path is its negative ex-

ponential slope which expresses the reduction of 

flexibility in time. At the last possible exercise date 

 there is no more temporal flexibility to further 

delay the investment. Then the classical investment 

theory is valid, and IV
* . 

2. Overview of simulation-based methods for 
valuing American type options 

There are many advantages of stochastic simulation 
in comparison with other valuation procedures. In the 
framework of a stochastic simulation, for example, 
various stochastic processes can be handled. Fur-
thermore, it is relatively easy to consider several sto-

                                                      
2 Note that the early-exercise of an American type call option without 

dividends of the underlying is never optimal. Therefore, the option value 

corresponds to the value of an equivalent European style call option (see 

Merton, 1973). 
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chastic variables simultaneously
1
. The most relevant 

methods which use simulation procedures to deter-
mine the early-exercise strategy and the price of 
American type options may be grouped as follows: 

1. Simulation of one finite sample of price paths 

starting at time 0 and subsequent stratification of 

the state space:  

Tilley (1993) uses a so-called bundling algorithm. 
Starting from time 0, a large number of price paths 
are simulated. At each potential early-exercise date 
the paths are ordered according to the stock price 
level at that date and divided into “bundles” of the 
same size. Next, starting from the expiry date of 
the option, the average of the continuation values 
of prices in a bundle is taken as the single con-
tinuation value for that bundle. This backwards-
recursive procedure yields an early-exercise strat-
egy for each simulated stock price path. The order-
ing of the prices enables the critical early-exercise 
value to be determined through the “identity con-
dition”. That is, the early-exercise value lies, 
where the intrinsic value coincides with the con-
tinuation value. However, this is based on the as-
sumption that the above-described average is an 
accurate estimate of the continuation value of the 
prices in a bundle, and also that there is a small 
distance between the bundles. In other words, one 
needs an extremely high number of paths in each 
bundle and a high number of bundles as well. In 
fact, there is a transition zone between holding and 
exercising in which the early-exercise strategy is 
determined by a pragmatic rule. Finally, the option 
price is obtained as the average of the discounted 
payoffs for the initially simulated stock price paths 
according to the early-exercise strategy. 

Barraquand and Martineau (1995) also reduce 
the dimensionality of the valuation problem by 
grouping simulated paths at any point in time 
into a limited number of “bins”. They determine 
transition frequencies between successive bins 
by another simulation and, finally, solve back-
wards like in a multinomial tree. 

Raymar and Zwecher (1997) similarly design a 
grid of “bucket” regions and simulate paths 
through that grid. Therefore, at any point in time, 
the realized outcome will be assigned to one 
bucket. Then, they determine: (1) transition fre-
quencies into/out-of each bucket at every date  

to each bucket at the next point in time 1 ; and 

(2) average realized values in each bucket. Even-
tually, they determine the average payoff in each 

                                                      
1 Stochastic simulation is considerably more efficient than other numeri-

cal procedures, such as lattice approaches, if two or more stochastic 

variables (or a great number of potential exercise dates) must be consid-

ered. With stochastic simulation the computational requirements in-

crease only linearly with the number of the variables, whereas with 

other methods it increases exponentially (cf. Hull, 2000). 

bucket at the date of expiration and iterate as in a 
multinomial tree to compute the current value of 
the American option.  

All three methods
2
 are mimicking the standard bi-

nomial tree by stratifying the state space and putting 

the simulated paths into groups which are called: 

“bundles” by Tilley; “bins” by Barraquand/Marti-

neau; and “buckets” by Raymar/Zwecher. Indeed, 

Garcia (2000, p. 9) also puts all three methods in 

one group: “The papers by Tilley, Barraquand/Marti-

neau, Ramar/Zwecher…  incorporate different aspects 

of the usual backwards induction algorithm by strati-

fying the state space and finding the optimal exercise 

decision in each subset of the state variables”. How-

ever, unlike Barraquand/Martineau or Raymar/Zwe-

cher, Tilley does not calculate transitions probabilities 

between successive bundles and solve as in a multi-

nomial tree. Instead, he uses a path-wise determina-

tion of the exercise strategy.  

2. Simulation of one finite sample of price paths start-

ing at time 0 and subsequent backward-recursive esti-

mation of a continuation value function: 

In a discussion of the Tilley-paper, Carriere 
(1996) describes Tilley’s bundling algorithm as 
a regression method, albeit crude. In a publica-
tion of his own (Carriere, 1996) he develops the 
regression method. Like Tilley, he simulates the 
stock price movement a large number of times. 
Subsequently, however, assuming that the op-
tion has not been exercised before, he deter-
mines the value functions which describe at any 
given date the value of the option, depending on 
the basis values in a backward recursive fashion. 
At the expiry date this value function is just 
the intrinsic value. After having determined the 
value function at a certain exercise date, he ap-
proximates a continuation value function at the 
previous exercise date by carrying out a piece-
wise polynomial regression of the already de-
termined values against the basis values at the 
previous exercise point. Then, he takes the value 
function as the maximum of the continuation 

                                                      
2 A variation of Tilley’s method, not explicitly included in our descrip-

tion of different subgroups, is given by Broadie and Glasserman (1997). 

They construct a multinomial tree of simulated paths by simulating 

z paths from V0 to V1. Then they simulate z paths from every of the 

z values for V1 to V2 and so on. It must be noted, that the computational 

requirements of the method proposed by Broadie and Glasserman 

(1997) explode, i.e., grow exponentially in the number of exercise dates 

(similar to a non-recombining tree). Therefore, the application of this 

method is, according to the authors themselves, limited to pricing op-

tions with up to five numbers of exercise opportunities. Nonetheless, the 

feasible number of simulation runs is necessarily lower than required for 

a reasonable level of accuracy (cf. Haug, 1998). Thence, they resort to a 

calculation of two option value estimates, one biased high and one 

biased low. The estimators are combined to give a valid confidence 

interval for the option price. Trying to get rid of this problem, Broadie 

and Glasserman (2004) further develop their 1997-procedure and call it 

“stochastic mesh method” (see also, Boyle et al., 2000). 
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value function obtained by this regression and 
the intrinsic value function. Using the continua-
tion value function, its intersection with the in-
trinsic value function can be calculated in order 
to determine the critical early-exercise value. In 
sum, by different regression methods he arrives at 
a comparable performance to Tilley’s method. It 
should be noted that, although the critical exer-
cise value is calculated, it is not used for a down-
stream simulation to determine the option price. 
The option price is rather determined as the av-
erage of the discounted cash flows of all the 
price paths according to their respective early-
exercise strategies. 

The method, proposed by Longstaff and Schwartz 
(2001), also proceeds in backward-recursive 
fashion to obtain at each discrete exercise date 
the continuation value function, depending on 
the basis value (see also, Tsitsiklis and van 
Roy, 2001; Clément et al., 2002; Moreno and 
Navas, 2003). This is achieved through use of 
the ordinary least squares method. They, subse-
quently, determine for each basis value whether 
exercising or holding of the option leads to the 
higher value. This results in a certain exercise 
strategy for each price path. However, the criti-
cal exercise value is not explicitly calculated 
and again, no downstream simulation to deter-
mine the option price takes place. The option 
price is rather found as the average of the dis-
counted payoffs of all the paths simulated at the 
beginning, according to their respective early-
exercise strategies. 

3. Multiple simulations and determination of the 

early-exercise strategy through maximization of the 

option value with regard to parameters of an exer-

cise function over time: 

Bossaerts (1989) estimates American option prices 
via simulation by parameterising the exercise func-
tion over time and then solving for the parameters 
that maximize the option value. 

Fu and Hu (1995), Fu and Hill (1997) and Fu et al. 

(2000) likewise parameterise the exercise bound-

ary, and maximize the expected discounted payoff 

with respect to the parameters. “ ...  no dynamic 

programing is involved, i.e., the procedure simul-

taneously optimises all parameters by iteration in-

stead of sequentially by backward recursion. ...  It 

is mimicking steepest-descent algorithms from the 

deterministic domain of non-linear programing” 

(see Fu et al., 2000, p. 13). 

Garcia (2000) also tries to find a suitable param-

eterisation of the exercise boundary by using an 

optimisation algorithm to determine those val-

ues of the parameters which yield the maximum 

option value. 

4. Backward-recursive determination of critical exer-

cise values, using sequential simulation of price paths 

starting from the respective exercise dates: 

Grant et al. (1997a) suggest a backward-recursive 

procedure whereby at each possible early-

exercise date, the stochastic development of the 

basis value (state variable) is simulated starting 

from an arbitrary initial test-value. For this test-

value, the intrinsic value is directly derived. 

Knowing the future exercise strategy, the re-

spective stochastic continuation value is com-

puted by using the expectation operator over all 

corresponding sample paths. If one finds that the 

intrinsic value is lower (higher) than the con-

tinuation value, one chooses, subsequently, a 

higher (lower) test-value. The above-described 

procedure is repeated until two test-values are 

found between which the “identity function” 

)()( VfVif id  has opposite signs. The ze-

ros of the identity function can be approximated 

by using a root finding algorithm such as the bi-

section or secant method, then bracketing the 

root of idf  to a required tolerance and interpo-

lating linearly to obtain an estimate for the root. 

Grant et al. predefine the bracket of the root by 

the set interval between the different discrete 

test-values, where simulations are started. 

Ibanez and Zapatero (2004) or Ibanez (2004) 

also suggest a backwards-recursive procedure, 

whereby at each possible early-exercise time 

the stochastic development of the basis value 

and the continuation value is simulated. How-

ever, the intersection of the easily calculated 

intrinsic value i  and the simulated continua-

tion value f (value-matching condition) is de-

termined by several iterations of Newton’s 

method, starting from an arbitrary basis value.  

The approaches of Grant et al. (1997a) and Ibanez 

and Zapatero (2004) or Ibanez (2004) are quite 

similar. There is one main difference, Grant et al. 

find two values of the asset at which the “identity 

function” has opposite signs and then use linear 

interpolation to approximate the boundary value 

(this is actually just one step of the secant method). 

Ibanez and Zapatero, in contrast, use several itera-

tions of Newton’s method to find the zero of the 

identity function. It would seem that a lot of work 

could be saved here by using the secant method as 

a root finding algorithm rather than Newton’s. The 

secant method converges almost as fast as New-

ton’s method but with the advantage that one 

avoids the rather cumbersome evaluation of the 

derivative of the identity function.  
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5. Multiple simulations and determination of the 

critical exercise path through maximization of the 

option value with regard to a heuristically varied set 

of exercise path values: 

Dias (2001) or Balmann and Musshoff (2002) 
maximize the option value with regard to a 
complete exercise path, containing a set of 
critical values which is gradually optimised by 
means of genetic algorithms. First, S simula-
tion runs, each starting from a different initial 
price in time 0, are carried out. Then, average 
option prices are computed for a number of test 
early-exercise paths (genomes) which had been 
randomly selected. These test exercise paths are 
ordered by the level of the option value (fitness) 

they generate, respectively. The application of 

the genetic algorithm (selection, recombina-

tion, mutation) determines the composition of 

the test exercise paths in the next test run (the 

next generation). This process, which generates 

increasingly fitter exercise paths by mimicking 

natural evolution, is repeated until all exercise 

paths of a generation are nearly identical. At 

this point, they also hardly differ from those of 

the previous generation and an improvement of 

the fitness is no longer possible (maximal op-

tion value). 

An overview of the basic characteristics of the above-
described simulation-based methods to value Ameri-
can type option is given in Table 1. 

Table 1. Classification of different simulation-based methods

 

Nonrecur-
ring 

simulation 

Stratifica-
tion of 
state 
space 

Backward-
recursive 

determination 
of exercise 

strategy 
within known 

paths 

Combina-
tion with 
lattice 

method 

Estima-
tion of 

continua-
tion 

function 

Explicit 
backward-
recursive 

determina-
tion of 
critical 
values 

Multiple 
simulations 
for deter-

mination of 
free 

boundary 

Down-
stream 

simulation 
for 

determi-
nation of 
option 
value 

Maximiza-
tion of 
option 

value with 
regard to 

parameters 
of exercise 

function 

Maximiza-
tion of 

option value 
with regard 
to heuristi-
cally varied 

set of 
critical 
values 

Tilley 
(1993) 

X X X   X     

Barraquand 
and Marti-
neau (1995) 

X X  X       

Raymar and 
Zwecher 
(1997) 

X X  X       

Carriere 
(1996) 

X  X  X X     

Longstaff 
and 
Schwartz 
(2001) 

X  X  X      

Bossaerts 
(1989) 

      X X X  

Fu and Hu 
(1995); Fu 
and Hill 
(1997); Fu 
et al. (2000) 

      X X X  

Garcia 
(2000) 

      X X X  

Grant et al. 
(1997) 

     X X X   

Ibanez and 
Zapatero 
(2004); 
Ibanez 
(2004) 

     X X X   

Dias (2001); 
Balmann 
and Muss-
hoff (2002) 

      X X X * X * 

Note: * Genetic algorithms can be used to determine an optimal set of critical values or to optimise the parameters of an exercise 

function over time. 

Many, albeit not all, of these procedures are either not 
satisfying with regard to the precision of the option 
valuation or require so much programing effort and 
computational time that they hardly appear to be prac- 

tical. This may or may not explain why they are, in 
general and without much differentiation, regarded 
by many experts as difficult to implement (see Hull, 
2000, p. 408). Another obstacle for widespread appli- 
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cations seems to be that some of the procedures offer 
little intuition or require a lot of deep mathematics. 
Indeed, some procedures may be unnecessarily com-
plicated compared to others for their intended appli-
cation. At the same time, some of the more complex 
and cumbersome methods are justified because they 
permit the modelling of special complexities inherent 
to some options. Agent-based simulations (genetic 
algorithms), for example, are sometimes necessary 
because they allow for the endogenous modelling of 
price dynamics within the framework of a real option 
pricing model (see Balmann and Musshoff, 2002). It 
should be noted that some financial options and all real 
options share the common feature of complexity. A 
suitable valuation method has to be flexible enough to 
take account of all real world qualities of an option. 
They may, for instance, arise from non-Markov proc-
esses, multiple stochastic variables, correlations of 
stochastic variables, interactions of different options 
etc. The following discussion focuses on the potential 
of the valuation procedure suggested by Grant et al. 
(1997a) the performance of which can be significantly 
improved by some modifications. Through some 
modifications its performance can be significantly 
improved. The improved method combines high accu-
racy and good intuition with simple implementation 
(see Section 4.2). According to our classification, it 
belongs to the group of methods which integrate se-
quential simulations of basis values for respective 
exercise dates into a backward-recursive procedure 
which in turn determines the critical exercise path.  

3. A simple recursive stochastic simulation 
approach 

The literature usually refers to all procedures that 
determine the critical early-exercise frontier by a 
backward-moving recursion (backward induction) 
as “dynamic programing approaches” (see Fu et 
al., 2000). This is due to the fact that the binary 
decision problem between exercising and waiting 
is regarded as a specific stopping problem (see 
Bellman, 1957). In this sense, lattice approaches 
also represent discrete approximations of the dy-
namic programing principle. Accepting this termi-
nology, those simulation-based procedures which 
determine the critical early-exercise frontier by a 
backward-moving recursion have to be subsumed 
under “dynamic programing” as well. The ap-
proach of Grant et al. (1997a) belongs to this 
group. It will be shown that it represents a straight-
forward and fast way to determine the critical 
early-exercise path and the option price of an in-
vestment option or an American style call option 
on a dividend paying underlying. Its advantages 
can be expanded by adopting some slight but effec-
tive modifications. This is already true if we con-
sider a single stochastic variable. For the sake of 
clarity we choose this case for a detailed descrip-

tion of operational procedures in Section 3.1. It is, 
however, equally valid if we consider multiple 
stochastic variables. The extensions, which are neces-
sary in this case, are shown in Section 3.2. In both 
cases, we could label this modified method “bounded 
recursive stochastic simulation” (BRSS) due to the 
specific characteristics of the process used to deter-
mine the critical early-exercise values.  

3.1. Valuing a call option with a single stochastic 

state variable. Before describing the BRSS-

procedure step by step for the case of a single sto-

chastic variable, we summarize the modifications 

which we have made to improve the efficiency of 

the approach of Grant et al. (1997a): 

In all simulations which start from the different 

test-values and which each comprise S paths, we 

use the same sequence of random numbers. We 

save a lot of time by simultaneously simulating 

all price paths starting from different values. 

For the determination of the critical early-exercise 

value as a free boundary we always use the 

(already known) critical exercise-value of the 

subsequent period as a lower bound for the test-

values we start simulating from. We make an 

educated guess at an upper bound, obtaining, 

thereby, an interval, which is divided into equal 

subintervals of a length, which is already deemed 

sufficiently small for interpolation. Using the 

exercise strategy of the subsequent period as a 

lower bound, turns out to be even more advan-

tageous when dealing with multiple stochastic 

variables and, therefore, more cumbersome ex-

ercise functions at each time instant. The proce-

dure of using a predefined sequence of test-

values has an additional advantage because it 

facilitates the automation of consecutive work 

steps. We do not use a manual criterion (i.e., 

“stop, if intrinsic value exceeds the continuation 

value for the first time”) which would tell us 

when to stop simulating paths, starting from still 

another test-value. Instead, we predefine an in-

terval, where we expect the identity function to 

be zero and program the determination of the 

critical value (see Figure 2). 

Step 1: Determination of the critical exercise value .*V  

The critical exercise value *V  at the expiry date  

of the option is the starting point of any backward-
recursive valuation. Since there is no temporal 
flexibility at the last potential exercise date, the in-
vestment should be carried out as soon as the in-

vestment payoff V  covers the investment costs I. 

Therefore, *
V  equals I. The knowledge of *

V  is the 

precondition for calculating *
1V . 
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Step 2: Determination of the critical early-exercise 

value .*

1V

The critical early-exercise value 
*

1V  is the pre-

sent value of the investment which yields an iden-

tical intrinsic value and continuation value. We 

calculate the intrinsic value )( 11 Vi  and the 

continuation value )( 11 Vf  for a set of differ-

ent test-values 1Vn , with Nn ...,,2,1 . For each 

test-value the intrinsic value can be directly de-

rived. The corresponding continuation value is 

estimated after running a stochastic simulation 

with S  runs, starting from the given test-value. 

We proceed as follows (see Figure 2): 

Step 2.1: Definition of test-values (test present 

values of the investment).

The lowest test-value 11V , we start simulating 

from is the theoretically known lower bound for 

date 1  which is given by the critical exercise-

value of the subsequent period, i.e., 
*V . Then we 

make an educated guess at a preliminary upper 

bound. The interval between the lower and upper 

bound (parameterization interval) is divided into 

1N  equal subintervals. The endpoints of these 

subintervals give us a total of N  test-values 1Vn

to start test-simulations from. The critical value 
*

1V  falls between those two test-values which 

yield a change of sign of the difference between 

intrinsic value and continuation value.  

Step 2.2: Determination of continuation values for 
each test-value by means of stochastic simulation. 

Given the stochastic process for the underlying asset of 
the option, S runs or paths starting from the lower 

bound 11V  = 
*V  are simulated resulting in S values 

of the investment Vsn  at date  ( s  denotes a simula-

tion run out of a total of S runs). Simultaneously, S
paths are simulated starting from the other test-values 

1Vn . For the simulations starting from different test-

values we use the same sequence of random numbers 
for all S runs1. This reduces computation time signifi-

cantly. Knowing *V , we calculate the continuation 

values 1fs
n  for all paths starting from any given test-

value 1Vn  as the discounted payoff of the option: 

)exp(),0max(1 rIVf s
n

s
n .     (5) 

The expected continuation value 1fn  is the average 

value of all 1fs
n :

S
ff

S

s

s
nn

1

1

11 .
      

(6)

Step 2.3: Calculation of intrinsic values for each test-
value.

In order to compare the possible strategies “invest” 
and “wait”, we must also calculate the intrinsic value. 

The intrinsic value 1in  for each test-value 1Vn

can be directly derived as: 

),0max( 11 IVi nn .     
(7)

Intrinsic value 

Continuation 

value 

7f -1

6f -1

n´´f -1 = 5f -1

n´f -1 = 4f -1

3f -1

2f -1

1f -1

nf -1 ni -1

7i -1

6i -1

5i -1 = n´´i -1

4i -1 = n´i -1

3i -1

2i -1

1i -1

Parameterization interval 

1V -1=V *
2V -1   3V -1     4V -1    5V -1    6V -1     7V -1 

                                                                        *
1V

Note: Depicted for N = 7 test values. 

Fig. 2. Determination of a critical early-exercise value of a (dividend paying) American call option using BRSS
1

                                                     
1 For technical details of the application of stochastic simulation to a wide variety of stochastic processes with established software packages see Winston 
(1998, p. 325). For example, Haug (1998, p. 40) stipulates carrying out at least 10 000 simulation runs. Fortunately, with any given number of simulation 
runs, one can improve the stability of the solution by using so called variance reduction methods without a great increase of computational time. An 
overview of various variance reduction procedures can be found in Glasserman (2004, ch. 4 and 5), Hull (2000, ch. 16.7) or Morokoff (1998). 
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Step 2.4: Approximation of the critical early-exercise 

value 
*

1V  by means of linear interpolation. 

It is very unlikely that the intrinsic value and con-

tinuation value will coincide at one of the pre-

defined test-values. In most cases, the critical 

value will fall between those two test-values, 

where a change of sign for the difference of in-

trinsic value and continuation value occurs. They 

will be denoted by n  and n , where it does not 

matter which one is the smaller. The respective 

intrinsic values ( 1in  and 1in ) and continua-

tion values ( 1f
n  and 1fn ) are used for lin-

ear interpolation (equivalent to one step of the 

secant method) through which the critical early-

exercise value is determined at any one point in 

time: 

)]([
)()(

11

1111

11
1

*

1 fi
fifi

VV
VV nn

nnnn

nn
n

(8) 

where 
*

1i and 
*

1f  denote the intrinsic value and 

the continuation value of the critical exercise-value 
*

1V . Note that 
*

1
*

1 fi = 0 (identity condition). 

In the example presented in Figure 2, one must 

interpolate between the values 1 41 VV
n

 and 

1 51 VVn . 

Reducing the length of the initial interval (see 

Step 2.1) improves the approximation, because it 

shortens the subinterval on which one needs to inter-

polate after rerunning steps 2.2 and 2.3. The initial 

interval must be enlarged if it did not include a test-

value, yielding an intrinsic value higher than the con-

tinuation value (see Table 3). 

Step 3: Determination of the critical early-exercise 

value 
*

2V . 

In order to determine the critical early-exercise value 
*

2V , one has to take into account the fact that the 

option may be exercised both at 1  and at . We 
can again use stochastic simulation to determine con-

tinuation values for a given set of test-values 2Vn , 

because we already know *
1V  and *

V  and, therefore, 

the future exercise strategy. The procedure to deter-

mine *
2V  is analogous to the one described in Step 2. 

Only the computation of the continuation value for 
each path has to be modified according to the optimal-
ity of exercising either at  or 1: 

with))]2([exp(),0max(2 rIVf s

n

s

n
 

otherwise,

if,1 *

11 VV
s

n

.
     (9) 

Step 4: Definition of the critical early-exercise values 
*

3V , *
4V , ..., *

0V . 

The procedure described above is applied backwards 
until all critical early-exercise values are known. An 
increasing “length” of future exercise strategy in-

creases the complexity of determining fs
n  according 

to the optimality of exercising at future dates. Equa-
tion (9) has, therefore, to be generalized as follows: 

with])[exp(),0max( rIVf
s

n

s

n
 

otherwise,

:

)()(if,2

if1

*

11

*

22

*

11
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s

n
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n

s

n

.

 (10) 

Figure 3 gives a graphical representation of the basic 
procedure to determine the critical early-exercise path. 

    

    

yes *

1V ? 

 
 

Definition of test 
values 

1V -1, …, NV -1 

*

2V ? 
 

   ... 

*

0V ? 
 

   ... 

 

Interpolation of 
critical value 

*

1V  

no 

Simulation of 
continuation values

1f -1, …, Nf -1 

Calculation of  
intrinsic values 

1i -1, …, Ni -1 

 

Interval for the 
identity 

condition found?

*
V = I 

 

   ... 

 

... 

 

Interpolation of 
critical value 

*

0V  

 

Fig. 3. Basic procedure to determine the critical early-exercise path using BRSS 
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Step 5: Determination of the option value. 

F0 is the maximum of intrinsic value i0 and con-

tinuation value f0. After having determined the op-

timal strategy as a free boundary, one has to initiate 

one last simulation, starting from the actual present 

value of investment cash flows V0. Then, the option 

value F0 can be determined as the expected value of 

all simulation runs S by determining i0 and f0 analo-

gous to Steps 2.2 and 2.3. Straightforward, stochas-

tic simulation can be applied because the optimal 

future strategy (i.e., the early-exercise path as a 

whole) is already known. 

3.2. Valuing an option with multiple stochastic 

state variables. When pricing financial options, 

we often assume that the value of the underlying 

is the only stochastic state variable. However, 

some financial option pricing models consider 

additional stochastic variables, such as a stochas-

tic variance and/or a stochastic risk-free interest 

rate. With real options there are still more sources 

of uncertainty to be taken into account. This is, in 

part, due to the fact that real options do not repre-

sent contractual rights. A good example is the 

investment costs which are a stochastic variable, 

even though, they are analogous to the (contractu-

ally fixed) strike price of financial options. An-

other necessity for integrating additional stochas-

tic variables may arise from a disaggregation of 

the state variable. A disaggregation is necessary if 

we value compound options with one or several 

follow-up options, such as options to switch use 

or to switch operating mode. The modelling of a 

choice between different outputs and/or inputs 

requires the use of revenues and variable costs (or 

even more disaggregated variables such as input 

or output prices) instead of the aggregated value 

of the underlying. In brief, we can summarize 

three reasons why we have to take account of 

multiple variables in real option pricing: 

several factors which can be considered as being 

stochastic in the case of financial options may 

also be stochastic in the case of real options 

(e.g., variance of the underlying); 

several factors which are contractually fixed in 

the case of financial options may represent addi-

tional stochastic variables in the case of real op-

tions (e.g., strike price); 

several factors which arise from a disaggrega-

tion of the state variable may replace this sto-

chastic state variable in the case of real options.  

Option pricing, based on more than one stochastic 

variable, needs to take account of correlations. 

Correlations between stochastic variables alter the 

stochastic development of these variables and 

cause a change of the option value. The modelling 

of correlations is straightforward in simulation-

based option pricing procedures (cf. Hull, 2000, p. 

409). Stochastic simulation procedures can gener-

ally handle multiple stochastic variables quite 

easily. Therefore, not many adjustments to option 

pricing procedures have to be made when deter-

mining the value of European options depending 

on multiple stochastic variables. It should be 

noted, however, that time discrete versions of 

stochastic processes cannot be used in the case of 

stochastic variances or a stochastic risk free inter-

est rate, etc. because they require a constant (i.e., 

non-stochastic) value of these parameters over 

time. That is why we have, even in the case of 

European options, to resort to a sufficiently fine 

discretisation of time when we simulate the price 

path of the underlying.  

Contrary to European options, it is quite cumber-

some to determine the early-exercise strategy and 

the value of American options which depend on 

multiple stochastic variables. With only one sto-

chastic variable, one needs, at each time instant, to 

determine one critical exercise value. This results in 

a two-dimensional early-exercise strategy over 

time (see Figure 1 and Figure 4 A). Now, one 

needs, at each time instant, to determine critical 

combinations of values for different stochastic vari-

ables (early-exercise functions) which form a multi-

dimensional early-exercise strategy over time. How-

ever, for the sake of clarity and feasibility of graphi-

cal representation we subsequently consider only the 

stochastic underlying and one additional stochastic 

variable at a time: first, a stochastic strike price (see 

Figure 4 B), second, an additional interference from 

the past emanating from an IMA(1,1) process (see 

Figure 4 C), third, a stochastic risk free interest rate 

(see Figure 4 D), forth, a stochastic risk neutral drift 

rate (see Figure 4 E), and fifth, a stochastic standard 

deviation (see Figure 4 F). 

In the case of stochastic investment costs, the problem 

of multiple stochastic variables can be reduced to de-

termining one critical value 
*

m , defining the constant 

positive gradient of the linear early-exercise function 

(see Figure 4 B). 

ImV **
.
      

(11) 

In contrast, a stochastic interference term from the 

past  emanating from an IMA(1,1) process or a 

stochastic risk free interest rate generate early-

exercise functions with negative and exponentially 

decreasing gradients (see Figure 4 C and D).  
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*
V  

A: Critical early-exercise value of a 

stochastic asset 
*

V

B: Critical early-exercise function depending 

on stochastic strike price I

D: Critical early-exercise function depending 

on stochastic risk free interest rates r  (risk 

neutral drift rate  = const.)a)

*
V

I

C: Critical early-exercise function depending 

on stochastic interferences from the 

past  in an IMA(1,1) process

r

*
V

*
V  

I 

E: Critical early-exercise function depending 

on stochastic risk-neutral drift rates  

(dividend rate  = const. > 0)a)

F: Critical early-exercise function depending 

on stochastic variances 

*
V  

*
V

 

Note: According to the risk-neutral valuation principle the 

following applies: r =  + . 

Fig. 4. Schematic representation of the critical early-exercise 
function at any point in time depending  

on two stochastic variables 

Stochastic risk-neutral drift rates and stochastic vari-
ances, in turn, generate early-exercise functions with 
positive and exponentially increasing gradients (see 
Figure 4 E and F). 

It has already been shown in the previous part of 
this paper that the powerful stochastic simulation 
procedures can be used for pricing American op-
tions by embedding them in a backward-recursive 
option valuation framework. Now, dealing with 
multiple stochastic variables and, therefore, early-
exercise functions instead of early-exercise values, 
we are again able to integrate operational proce-
dures solving this problem into the broader me-
thodical framework of simulation-based option pric-
ing. The following steps specify the additional op-
erational procedures needed within a framework of 
option pricing which is based on a backward recur-
sive stochastic simulation of price paths:  

At expiration, the critical exercise function is re-

duced to the well-known critical exercise value I. 

In the last early-exercise date we use the free 

boundary approach. Instead of determining one 

critical value, however, we determine a discrete 

critical value of the underlying for a given value 

of the second stochastic variable, using the value 

matching condition. By a subsequent systematic 

variation of the second variable, we find critical 

values of the underlying, depending on the sec-

ond stochastic variable (critical combinations).  

In most cases subsequently simulated price 

paths will not coincide exactly with these se-

lected combinations of discrete values. We 

could therefore use linear interpolation in order 

to determine the (piecewise) exercise strategy. 

We could even avoid having to store selected 

discrete values to interpolate between by esti-

mating, at each time instant, an explicit critical 

early-exercise function via regression. 

By proceeding recursively backwards, all the 

other critical combinations (respectively early-

exercise functions) can be determined because 

at any single exercise point the future strategy is 

known. In order to save time, we always use the 

(already known) critical combination of values 

of the subsequent period as a lower bound for 

the test-values we start simulating from. 

After the determination of this multidimensional 

early-exercise strategy the value of the option 

can again be calculated by one simple Monte 

Carlo simulation, starting from the presently ob-

served value. 

A major problem with dynamic programing type 

algorithms is the so called “curse of dimensional-

ity”: except for perfect correlations, the number of 

samples per variable grows exponentially with the 

number of stochastic variables if a given level of 

accuracy is to be maintained. This increases compu-

tational costs and in particular storage consumption. 

Compared to pure dynamic programming methods, 

which model the development of the stochastic vari-

able over time, the main advantage of the above-

described approach for the consideration of multiple 

stochastic variables is that, at each time instant, only 

a discrete approximation of the hyperplane of the 

critical early-exercise values (or even only a critical 

early-exercise function) needs to be stored. 

4. Option pricing and validation of different 

approaches 

In this Section we compare, test and validate four 

different methods to determine the critical early-

exercise paths and the option value: (1) the BRSS-

method derived above, (2) the original approach by 

Grant et al. (1997a), (3) the approach by Ibanez and 

Zapatero (2004) or Ibanez (2004), and (4) genetic 

algorithms. We apply these methods to a straight-

forward valuation problem. This enables us to vali-

date the results of the simulation based approaches 

against the reference solution provided by the bino-

mial tree method.  

The context is that of a Bermudan type investment 

option which can only be exercised at certain points 

in time. This assumption is plausible for real op-

tions because the realization of an investment is often 
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restricted by seasonal conditions, the legal frame-

work, etc. We assume that there is only one source 

of uncertainty, namely the present value of future 

cash flows (the value of the underlying asset) which 

follows GBM. In order to generate an adequate 

validation benchmark, we assume the same Bermu-

dan option (i.e., the same number of early-exercise 

opportunities) and use a very fine discretisation of 

time in the binomial tree (cf. Cox et al., 1979). 

4.1. Model assumptions. A present value of in-

vestment cash flows 0V  of 110 T€ is expected. The 

investment costs I  are 100 T€. They are completely 

sunk once the investment is carried out. Investment 

opportunities are given at dates , ...,,1,0  

with 5 . The lifetime of the option is 5T  

years. The length of a time period between two po-

tential exercise dates is 1/T  year. There-

fore, there are 61  potential exercise opportu-

nities. The standard deviation of the stochastic proc-

ess for the expected present value of the investment 

cash flows  is 20% p.a. Additionally, there is a 

continuous convenience yield (dividend payment) 

 of 5.83%. The continuous risk-free interest rate 

r  is also 5.83 %. This is equivalent to a discrete 

interest payment of 6% p.a. It is assumed that , r  

and  are constant. The state variable V  follows 

GBM (see Hull, 2000, p. 407):  

dzVdtVrdV )( ,   (12) 

where dz  describes a Wiener process.  

We use the discrete-time version of a GBM for the 

simulation: 

])2/exp[( 1
2

1 rVV ,  (13) 

where  is a standard normally distributed random 

number. In order to improve the stability of the solu-

tion of simulation based option valuation methods, 

we use the antithetic variables technique. 

We are to answer the following questions: (1) What 

is the value of the investment option? and (2) Which 

present value of investment cash flows would trig-

ger an immediate investment? 

4.2. Results and validation. The results for both the 

early-exercise path and the value of the option are 

shown in Table 2. According to the BRSS-method, 

the investment option should be immediately exer-

cised if the expected present value of investment cash 

flows exceeds 145.47 T€. Looking at the critical val-

ues at subsequent dates, one sees very easily that the 

critical exercise path decreases exponentially with the 

reduction of the lifetime of the option. That was ex-

pected from theoretical insight (see right illustration 

in Figure 1). The value of the investment option ac-

cording to the BRSS-method is 19.91 T€. 

Table 2. Comparison of different valuation procedures 

Binomial tree method * 
(reference) 

Bounded recursive sto-
chastic simulation (BRSS) 

Approach by Grant et al. 
Approach by Ibanez and 

Zapatero 
Genetic algorithm ** 

Critical early-exercise value 
*

V  

0 145.27 145.47 145.43 145.39 144.57 

1 142.50 142.43 141.53 142.66 140.69 

2 138.96 138.55 137.78 138.55 134.24 

3 133.56 132.53 133.73 133.42 128.59 

4 125.11 124.69 124.48 124.94 121.94 

5 100.00 100.00 100.00 100.00 100.00 

American style option value 
0F  

 19.86 19.91 19.88 19.77 19.67 

Confidence interval for the ”true“ option value 
0

~
F  (with 5% error probability) 

 
- 19.70 <

0

~
F < 20.12 19.67 <

0

~
F < 20.09 19.56 <

0

~
F < 19.97 19.47 <

0

~
F < 19.88 

Time required for programing the model 

 small small small high very high 

Time required for computation of 
*

V  and 
0F *** 

 approx. 5 min  approx. 30 min  approx. 2 h  approx. 8 h approx. 12 – 24 **** 

Note: * The discretisation of the development of the state variable (value of investment cash flows) is 0.05 years; 
 ** 100 generations with in each case 50 000 simulation runs; 
 *** computing time with direct programing in MS-EXCEL. For the simulation-based methods, 50 000 simulation runs are carried out; 

antithetic variables technique is used; 1 400 MHz-processor; 
 **** highly dependent on random numbers. 
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The reference solution from the binomial tree and the 

results of alternative simulation based methods are also 

given in Table 2. It is apparent that all procedures yield 

almost identical values for the critical early-exercise 

path. Only the early-exercise values found by the ge-

netic algorithms approach deviate a little bit from those 

found by the other methods. But the option prices F0 

found by the different methods, including genetic algo-

rithms, are virtually the same. Confidence intervals for 

the option price are used to describe the quality of the 

different simulation based procedures. They are quite 

small and very similar for all simulation procedures. 

The performance of the different numerical methods 
from the practical point of view (i.e., programing effort 
and computational cost) is also summarized in Table 2. 
Of all simulation procedures, BRSS causes the least 
computational costs. Naturally, for this simple prob-
lem, the binomial tree is the least cumbersome, both 
with regard to programing effort and computational 
time. It must be emphasised, however, that lattice 
methods do not show enough flexibility to consider 
complex stochastic processes (e.g., non-Markov proc-
esses like autoregressive integrated moving-average 
processes), multiple stochastic variables, correlations, 
path-dependent Asian options, etc. In contrast, all these 
complexities can be easily implemented within the 
framework of simulation-based procedures. This has 
been shown in a number of publications which, while 
not systematically comparing different methods, use 
simulation-based methods to solve different types of 
complex option problems. To name a few examples: 
Odening et al. (2005) consider different stochastic 
processes in the real options context (mean reverting 
process, arithmetic Brownian Motion, Poisson process 
etc.). Grant et al. (1997b) analyze price path-dependent 
Asian options, and Ibanez and Zapatero (2004) con-
cern themselves with multiple stochastic variables. 
Genetic algorithms feature the highest programing and 
computation requirements and represent the most 
flexible option pricing method (cf. Balmann and 
Musshoff, 2002). They are needed, for instance, if real 
option pricing is carried out in a framework of game 
theory, where we have to consider different “players”, 
and where we must look for an equilibrium-strategy 
(Nash-equilibrium). However, since genetic algo-
rithms require significantly higher programing efforts 
and more computational time compared to other simu-
lation approaches, they should be used only if they are 
really required. In all circumstances in which we do 
not have to deal with competition, but only with com-
plex (American type) options, the BRSS-method is to 
be preferred. Focussing on the BRSS-method, one can 
state that it yields highly accurate results the quality of 
which is comparable to the quality of other simulation 
procedures (see confidence interval). It furthermore 
provides the fastest solution of all simulation-based 
procedures used in the test bed. It also requires the 
smallest programming effort. 

One might assume that, within the BRSS-method, 
the length of the parameterization interval for the 
test values (cf. Step 2.1 in Section 3.1) plays a 
pivotal role for the method’s accuracy and re-
source requirement. Using the last early-exercise 
date as an example and ignoring the already known 
lower bound, we show in Table 3 that the critical 
value is quite robust regarding a variation of the 
length of the parameterization interval. However, 
as shown in the last two rows of Table 3, the in-
terpolation error increases significantly if the in-
tersection of the continuation value function and 
the intrinsic value function is situated outside the 
parameterization interval. While the option value 
is not very sensitive to minor errors in the early-
exercise strategy, we recommend that, in this 
case, the parameterization interval should be rede-
fined. 

Table 3. Sensitivity of the last early-exercise value 

with respect to the parameterization interval 

Parameterization 
interval 

Length of the interval 
Last early-exercise 

value (  = 4) 

100 to 172 8.00 124.69 

120 to 130 1.11 124.60 

122 to 126 0.44 124.59 

123 to 125 0.22 124.59 

100 to 120 2.22 123.95 

130 to 150 2.22 123.66 

Note: We always use ten test-values. Thus a reduction of the 

parameterization interval translates into an equivalent reduction of 

the interpolation interval; 50 000 simulation runs are carried out. 

Leaving the assumption of a Bermudan option, we 

turn to the discretisation problem inherent to numerical 

option pricing approaches if applied to continuous 

time problems. For financial options with continuous 

exercising opportunities, option pricing based on dis-

crete exercise points only approximates the true value 

of the option and leads to a low bias because it under-

estimates the flexibility. It is clear that both the effort 

for and the accuracy of the numerical pricing of an 

American option increases with the number of discrete 

time intervals and exercise opportunities that are con-

sidered. However, while effort increases linearly with 

the number of critical early exercise values to be de-

termined, the marginal contribution to accuracy result-

ing from additional effort is not known a priori. That is 

why we generate solutions for different time intervals. 

Referring to the results in Table 4 we can derive the 

following conclusions: 

1. Cox et al. (1979) show that, with a decreasing 
length of time steps, the results of the binomial 
method converge to the results of analytical solu-
tions. Comparing the binomial tree solution for the 
European option with the analytical solution (see 
last row in Table 4) demonstrates that the chosen 
time interval of 0.05 years is already an acceptable 
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representation of a continuous stochastic process 
since it produces only a marginally differing op-
tion price. The same applies for the stochastic 
simulation with 50 000 runs and combined with 
the antithetic variables technique. 

2. Each row in Table 4 can be understood as a 

Bermudan option. For each one of these Bermu-

dan options, the BRSS produces results are 

comparable to those derived from the binomial 

tree method. With regard to an American option 

(with continuous exercise opportunities), it should 

be noted that the bias caused by the inevitable 

discretisation of the exercise opportunities within 

numerical approaches arises in both methods.  

3. There is very little additional flexibility and thence 

little increase of the option value if we increase 

the number of early-exercise opportunities from, 

let’s say, 20 to 50. We have only a very mar-

ginal contribution to accuracy by a lot of addi-

tional effort. Again this applies to both methods 

likewise.  

Table 4. Values for options with different numbers of 

exercise opportunities 

 
Bounded recursive stochastic 

simulation (BRSS) * 

Binomial 
tree 

method ** 

Black-
Scholes-
Merton 

equation *** 

 
Option 

value F0 
Confidence interval (5% 

error probability) 
Option 

value F0 
Option value 

F0 

100 20.20 20.01 <
0

~
F < 20.40 20.18 n.a. 

50 20.17 19.97 <
0

~
F < 20.36 20.17 n.a. 

20 20.15 19.95 <
0

~
F < 20.35 20.11 n.a. 

10 19.97 19.77 <
0

~
F < 20.18 20.02 n.a. 

5 19.88 19.67 <
0

~
F < 20.09 19.86 n.a. 

2 19.22 18.99 <
0

~
F < 19.45 19.29 n.a. 

0 17.95 17.61 <
0

~
F < 18.29 17.91 17.93 

Note: * 50 000 simulation runs are carried out; antithetic variables 

technique is used; 

 ** the discretisation of the development of the state vari-

able (value of investment cash flows) is 0.05 years; 

 *** cf. Black and Scholes (1973) as well as Merton (1973). 

Summary and conclusions 

Quite contrary to a belief still prevailing even in the 

“professional world” (see Hull, 2000, p. 408; Trigeor-

gis, 1996), American type options can be quite easily 

priced by methods using Monte Carlo simulation. In 

the last decade, a great number of simulation-based 

procedures have been proposed. They are flexible 

enough to value even complex options and, in particu-

lar, real options which are often characterized by com-

plex stochastic processes, multiple stochastic factors, 

correlation etc. Some of the procedures proposed so 

far suffer from an unsatisfactory flexibility or accuracy 

and/or a high programing and computational demand. 

Others are particularly appealing because of their accu-

rateness, simplicity, flexibility and intuition. This is 

particularly true for the modification of the approach 

of Grant et al. (1997a) which we propose in this paper 

and which we call “bounded recursive stochastic simu-

lation” (BRSS). Although, this modification appears to 

be rather marginal at first view, it allows for a signifi-

cant reduction of computational time without loss of 

applicability. 

In accordance with Grant et al. (1997a), the BRSS 

integrates a sequential stochastic simulation of price 

paths in a backward recursive programing approach to 

determine the critical early-exercise path. Then it val-

ues the option by initiating a simple Monte Carlo 

simulation from the valuation date of the option. The 

determination of the critical early-exercise values is 

straightforward: starting from the end and moving 

backward, for every exercise date, the critical value is 

determined by systematically simulating sample paths 

for the underlying asset emanating from different test-

values at the respective date. The critical value falls 

between those test-values which yield a change of sign 

in the difference of intrinsic value and continuation 

value. It can be estimated by linear interpolation. 

The BRSS is to be preferred to many other simulation-

based valuation procedures due to its flexibility, espe-

cially with regard to the consideration of multiple sto-

chastic variables. It is also to be preferred due to its 

simpicity, intuition and ease of implementation. Com-

paring its results to those of the binomial tree method 

shows that it yields highly accurate results. However, it 

must be recognized that there are real options prob-

lems which require even more flexible valuation 

methods. This is so, for instance, if we need to con-

sider competition and, therefore, price dynamics 

endogenously instead of using a given stochastic price 

process as an input for a real option pricing model. In 

this case, option pricing will have to take account of 

decisions of agents or “players” and will be set in a 

framework of game theory where we have to look for 

an equilibrium strategy (Nash-equilibrium). This can 

be implemented by integrating genetic algorithms 

into simulation procedures (agent-based simulation 

procedures). Yet, it should be stated that these meth-

ods are more complex and require much more com-

putational time. That is, the choice of the option pric-

ing procedure should follow the economic rationale 

to use the least costly one needed for the option pric-

ing situation under consideration. 
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