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Abstract 

The model presented in this paper studies the presence of closed orbits that signal economic fluctuations and periodic 

solutions around the steady state. The problem is to understand the mechanism that leads to an indeterminate equilib-

rium in presence of natural resource use, and therefore suggest the emergence of a poverty-environment trap. 
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Introduction

The sustainable use of natural resources is one of 

the most debated and intriguing social issues. Trying 

to understand whether an economy can grow along 

an optimal path without sacrifying its natural capital 

is not an easy task. A common view of nowadays 

economies basically assumes that productions 

highly depend on natural resource overuse, and no 

growth is therefore possible without this input. 

Some problems, however, emerge when we try to 

model this stylized fact. Even though standard 

neoclassical theory predicts the existence of a 

unique (i.e. determinate) saddle path stable equilib-

rium. It is well known that the rise of market im-

perfections may create the problem of an indeter-

minate equilibrium. 

In fact, dynamic models of renewable resources 

with two state variables can easily exhibit multiple 

steady states and give rise to some ecological man-

agement problems (Wirl, 2004). This may conse-

quently explain the cross-country differences in 

optimal resource use due to market imperfections, 

associated with the indeterminacy of the equilib-

rium. Moreover, the rise of multiple equilibria in 

presence of an overexploitation of natural resources 

can be the major cause for a vicious poverty-

environment trap situation, where policies (i.e. tech-

nological innovations) aimed at alleviating the over-

exploitation and exhaustion of the environment 

might not be able to avoid a still unsustainable use 

of natural resources (see, for example, Finco, 2009). 

The determinants of endogenous growth have been 

widely investigated in the literature, with particular 

focus on two-sector continuous-time growth models, 

with infinitely-lived agents and some form of market 

imperfections, where a large strand of analysis dem-

onstrates how a continuum of equilibrium trajecto-

ries, existing in the neighborhood of the steady 

state, can emerge whenever some parametric con-
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ditions are verified. This phenomenon is commonly 

known as ‘local indeterminacy’ (see, inter alia, Slo-

bodyan, 2007; Chamley, 1993; Benhabib and 

Farmer, 1994 and 1996, Benhabib and Perli, 1994; 

Benhabib, Perli and Xie, 1994; and Benhabib, Meng 

and Nishimura, 2000). 

However, only very few attempts have been made to 

analyze the conditions under which these indetermi-

nacy problems arise outside such small neighbor-

hood of the steady state, to whom we refer to as 

global indeterminacy. The presence of non-linear 

functions increases the difficulties in handling these 

models. Examples of this analysis can be found, for 

instance, in Nishimura and Shigoka (2006), where 

the emergence of an Andronov-Hopf bifurcation is 

used to prove the presence, in a bounded parametric 

region, of periodic orbits surrounding an equilib-

rium, that is said to be globally indeterminate (see, 

also, Mattana and Venturi, 1999; and Mattana, Ni-

shimura and Shigoka, 2009). 

The model presented in this paper studies the 

presence of closed orbits, that signal economic 

fluctuations and periodic solutions around the 

steady state. The purpose is to understand the 

mechanism that leads to such problem in presence 

of natural resource use. That is, when the orbit is 

attracting, trajectories on the center manifold are 

locally captured by the orbit which becomes itself 

an (indeterminate) limit set. On the contrary, 

when the orbit is repelling, trajectories around the 

BGP tend to converge to the long-run equilibrium. 

The presence of such periodic solutions can there-

fore suggest the emergence of a poverty-

environment trap. 

The rest of the paper is organized as follows. In 

Section 1, we present the model, derive the steady 

state conditions, and study the local dynamics. In 

Section 2, we characterize the parametric space, 

where periodic solutions emerge, and the equilib-

rium becomes indeterminate. The final Section con-

cludes, and a subsequent Appendix provides all the 

necessary proofs. 
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1. The model 

Let us consider the following optimal control 

problem:

dte
c

Max t

tc 1

11

0)(
                      ( P )

subject to the following constraints: 

),1(

)( 1

nRRR

cRnRAkk a

and given initial positive values: 

0)0(and,0)0( 00 RRkk ,

where c  is consumption, k  is physical capital, and 

A  measures the stock of existing technology. Let 

also assume a fraction ]1,0[n  of the natural re-

sources at disposal R , be allocated both with physi-

cal capital k , to the production of new output Y, 

whereas the remaining part is left for future recrea-

tion. Moreover, 1,0 is the share of physical 

capital in the same sector,  is a time preference 

rate, and  is the inverse of the intertemporal elas-

ticity of substitution. 

In particular, the level of investment in physical 

capital is given by the usual functional form 

CYK , where output Y  is produced according 

to the function: 

aRnRAkY 1)(                                              (1) 

with physical capital k , entering as an input along 

with natural resources R . Moreover, aR  repre-

sents an external effect due to the presence of a 

common pool natural resource, that no one will 

take account for when deciding how to allocate it 

in time, and  is an externality parameter. Basi-

cally, we are assuming that, in addition to the indi-

vidual effects coming from the use of natural re-

sources on his own productivity – what we may 

call the internal environmental effect – room is left 

for some external effects either, denoted by aR .

Specifically, we call this effect external because, 

even though all benefit (if positive) from it, no 

individual will take it into account when making 

his optimal decision plan1.

                                                     
1 This specific production function exhibits constant returns to scale at a 

disaggregate level because each firm takes Ra as given. On the contrary, 

a social planner can internalize this kind of externality, thus obtaining 

increasing returns. 

Henceforth we assume that, the dynamics of the 

stock of natural resources R , follow a logistic-like 
law of motion, given by: 

)1( nRRR ,                                                   (2) 

where  is a positive parameter for natural pro-

ductivity. 

The current value Hamiltonian of problem P  is 
given by: 

cRnRAk
c

H aC

1
1

)(
1

1

)1( nRR ,

where  and  represent the shadow prices of 

physical capital and natural resources, respectively. 
Solution to this optimal control problem implies the 
following necessary first order conditions: 

c

211 RRnAk ,                 (3) 

accompanied by the equation of motion for each 
costate variable, that can be obtained with a bit of 
mathematical manipulation: 

),1(

,111

nR

RnAk
                               (4) 

and the transversality condition:  

0][lim tttt

t

t
Rke                                       (5) 

has jointly constitute the canonical system. 

The next Section, thus, moves directly to the analy-
sis of the transitional dynamics around the equilib-
rium solution. 

1.1. The reduced model. The standard procedure is 
conducted in this Section to study the transitional 
dynamics of problem P.

Proposition 1. The maximum principle associated 
with the decentralized optimization problem P im-
plies the following four-dimensional system of first 
order differential equations: 

k

c
RnAk

k

k
k

111
,

)1( nR
R

R
R ,                                          (S1)

111 RnAk
c

c
c ,
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Proof (see Appendix). 

Lemma 1. The system S1 implies also the following 
reduced version: 

mqmm

xqqqq

xmxxx

)1()1(

,)1(

,

2

2

                           (S2)

by means of the convenient variable substitu-

tions:
k

c
x , nRq , and

k

y
m .

Proof (see Appendix).

Lemma 2. The steady state is a triplet ( mqx ,, )

which solves the reduced system S2:

)1(
m ,

)1(

)1(
x ,

)1(

)1(
1q  ,

given 10 .

Since the Jacobian matrix associated with S2 is: 

)1(

)1(
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mqx
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let

DetJBJtrJJ 23)I(det

be the characteristic polynomial of J , where I is 

the identity matrix and trJ , BJ , and DetJ  are 

trace, determinant and sum of principal minors 

associated with J , respectively. Algebraic com-

putation easily shows: 

,
)1(

)1(
trJ

,
)1(

)1(
22

22

BJ                                            (6)

qxmDetJ
)1(

.

Studying the local dynamics of this economy while 

converging to the steady state is very direct and 

straightforward. The neat Routh-Hurwitz criterion 

applies to this case, and confirms the possibility of 

emergence of periodic solutions. The interior steady 

state can therefore be indeterminate. 

In detail, the bifurcation analysis allows us to verify 

if a parameter value, c , there exists at which a 

structure of closed orbits Hopf bifurcating from the 

steady state solution would appear1. This occurs 

when a complex conjugate pair of eigenvalues do 

emerge. To prove this, we need to check the sign of 

the following expression: 

33

2

)1(

))(1(
)( DetJtrJBJG

)]1()1([ ,                   (7) 

which vanishes 

at c  or
)1(

c .

The following Figure 1 shows the presence of multi-

ple solutions for ).(GG  We analyze, for exam-

ple, the case where 002.0 , 66.0 , 2, and 

04.0 . Therefore, 0)(G  when 66.0c

and 975.0c .

Fig. 1. The Hopf bifurcation curve 

Thus, multiple values of  are able to annihilate 

)(G . If this happens, we will show that any varia-

tion of  around c  can force the variables associ-

ated to the complex conjugate eigenvalues to oscillate 

                                                     
1 The choice of as a bifurcation parameter is conveniently made to 

avoid the particular case of a zero eigenvalue that would appear if using 

the externality parameter . This is out of the scope of the present paper, 

and is left for further research. 
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around a common constant value. This means also 
that, an invariant cycle (a closed orbit) may emerge 
around the steady state, or collapses crucial role in the 
characterization of an optimal solution to our maximi-
zation problem, and thus matters in the process of a 
long run sustainable growth. 

To get in a deep investigation of this concern the 
next Section is devoted to this. 

2. Periodic orbits and indeterminacy 

Studying the properties of an equilibrium outside 
the small neighborhood of the steady state is not an 
easy task, especially, when dealing with non-linear 
functions that complicate the algebraic calculations 
behind it. 

This Section is aimed at showing the emergence of 
periodic solutions by means of the Hopf bifurcation 
theorem, which requires several necessary steps to 
be followed. 

Firstly, we need to put the system S2 in an appropriate 
canonical form to work with. To do this, we translate 
the equilibrium fixed point to the origin, by assuming: 

qqq

mmm

xxx

~

~

,~

,

which transforms the original systems S2 into S3: 

).~()~(1
)(

)~)(1(~

),~)(~()~()~(1
)(~

,)~()~)(~()~(~

2

2

mmqqmmm

qqxxqqqqq

xxxxmmxxx

The second order Taylor expansion of this vector field 
allows us to put S2 in a Jordan normal form, given by: 

)~,~,~(
~

)~,~,~(
~

)~,~,~(
~

~

~

~

~

~

~

3

2

1

mqxf

mqxf

mqxf

m

q

x

J

m

q

x

,                              (8) 

where J corresponds to the Jacobian matrix associ-
ated with the linearization of the original system S2, 

J = J* (0), whereas the 
if

~
 terms represent the non-

linear terms (of order 2). In detail: 

,~~~

2

1
)~,~,~(

~ 2

1 mxxmqxf

,~~~)~,~,~(
~ 2

2 qqxmqxf                 (9) 

mqmmqxf ~~~1)~,~,~(
~ 2

3 .

Proposition 2. Assume J be characterized by one 
real and a pair of purely imaginary eigenvalues, that 

is: 1 = trJ, i3,2 . Let T be a matrix of the 

eigenvectors ( u,v,z ) associated with the structure of 
the aforementioned eigenvalues of J at the bifurca-
tion point. Then, it is possible to put the system in 
the following Jordan normal form:

iFTwJTw )0(1
,

where )(1 TwfTF ii
, given the associated change 

in coordinates:  

3

2

1

~

~

~

w

w

w

T

m

q

x

which transforms system S3 into S4:

,3213

,3212

,3211

3

2

1

3

2

1

,,

,,

,,

))0((Tr00

00

00

wwwF

wwwF

wwwF

w

w

w

Jw

w

w

,

where iF are the transformed second order non- 

linear terms. 

Proof (see Appendix).

Thus, we are able at this step to restrict the vector 

field in (S4) to the plane ( 21, ww ) whose eigenspace, 

at the bifurcation value c , corresponds to the 

complex pair of eigenvalues, i2,1 , which is 

topologically invariant with respect to the original 
system S11. A center manifold reduction of the lin-
earized vector field allows us to investigate this case. 

Proposition 3. A second order approximation of the 
center manifold which reduces the vector field in S3 
is given by the following equation.

][
2

1
),( 2

23212

2

11213 wwwwwwhw ,

where i are coefficients that satisfy the stability 

condition 3w = 0 . 

Proof (see Appendix).

                                                     
1 If we substitute DetJtrJBJ  in the characteristic equation at the bifur-

cation point, one eigenvalue is real and positive, and equal to the 

trace, trJr
, while the other two eigenvalues are complex conjugate, 

ic
, assuming BJ .
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The vector field at the center manifold therefore 
reduces to: 

),(,,

),(,,

0

0

2121

2

2121

1

2

1

2

1

wwhwwF

wwhwwF

w

w

w

w
,  (S5) 

where
iF  represents the second order nonlinear terms  

of the vector field at the center manifold. 

The restricted vector field (S5) allows us to prop-

erly investigate the presence of periodic solutions 

in the two-dimensional phase space ),( 21 ww . In 

fact, an application of the Hopf bifurcation theo-

rem follows immediately. Let 

12221112211

11112221112221222211221111 16

1

16

1
wwwwwwwwwwwwwwwwwwwwwwwwww FFFFFFFFFFFq    (10)

be the explicit calculation of the Andronov-Hopf 

bifurcation coefficient1.

Remark 1. If 0q the emerging cycle around the 

steady state is attracting, i.e. a supercritical Hopf 

bifurcation occurs.

The value of q , at the two bifurcation points, can be 

either positive or negative. Therefore, both bifurca-

tions can be super-critical or sub-critical. The fixed 

points are unstable and the orbits are attracting on 

the center manifold. This is shown by means of the 

following numerical example. 

Example 1. Assume 002.0 , 66.0 , 2 ,

04.0 . If 66.0c , then 01040.2 12q ,

that is to say the bifurcation is super-critical, the 

steady state is unstable and the periodic orbits are 

attracting on the center manifold. On the contrary, in 

correspondence of 975.0c , we have

01037.8 14q , that is to say the bifurcation is 

sub-critical, and the periodic orbits start repelling.

Thus, we are able to conclude that different periodic 

solutions may emerge in presence of optimal re-

source extraction, which leads consequently to the 

rise of some indeterminacy problems, which might 

be able to explain the rise and fall of different 

nowadays economies that, even though endowed 

with the same initial conditions, may at some point 

start to perform differently in growth rate terms and 

thus follow different long run equilibrium paths. 

Conclusions

The emergence of multiple equilibria has been used in 

the literature to explain the diversity of growth rates 

across countries. It is so worth noting that depending 

on the values of the inverse of the intertemporal elas-

ticity of substitution, either multiple or unique equilib-

ria (i.e., determinate versus indeterminate solutions) 

may consequently arise. 

                                                     
1 The whole calculation of all coefficient values in equation (10) though 
computed is omitted from the Appendix for convenience of space. They 
are available upon request. 

The implications of indeterminacy concerns can be 

synthesized in follows: two identically endowed 

economies with identical initial conditions may 

consume, and invest in the production of natural and 

physical capital, at completely different rates. Only 

in the long run those economies will converge to the 

same growth rate, but not to the same level of output 

and natural and physical capital. It is therefore pos-

sible to consider other cultural, historical or non-

economic factors as the means for equilibria to dif-

fer on the transition path to be followed towards the 

long run steady state. Indeed, we refer here to local 

indeterminacy, and the coexistence of multiple bal-

anced growth paths, as the device to theoretically 

reinterpret the possibility for different regions, iden-

tically endowed in terms of existing natural re-

sources, to exhibit uneven economic developments 

in a sustainable way. 

The positive implication of this paper can be the 

following: given the different allocation of natural 

resources across countries, and assumed that multi-

ple equilibria may exist. It is no wonder that a clear 

convergence among the world economies is not 

observed. In the management of their natural re-

sources, we may notice instead that, meanwhile, 

some countries have lagged permanently behind due 

to short-sighted policies, some others have experi-

enced higher growth rates due to a more sustainable 

behavior. It might be so that an historically stagnant 

region continue to be so, while other regions, per-

haps historically more active, may continue to flour-

ish, even though they are the same in all other as-

pects. History matters then, and the management of 

the natural resources may act as a selection device 

among these different equilibria. 

To shed some light in this field, we presented a 

model to answer the question on whether similar 

countries may exhibit very different growth experi-

ences, arguing that a crucial aspect for the occur-

rence of both indeterminacy and cyclical adjustment 

towards the steady state might be the presence of 

particular bifurcation values of the inverse of the 

intertemporal elasticity of substitution. Conclusions 
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to our analysis confirm that such parameter matters 

in the transition towards a long-run sustainable equi-

librium, thus leaving space to other more compli-

cated dynamic phenomena characterized by periodic 

solutions and closed orbits to trap the economy in a 

low level equilibrium. 
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Appendix

1. The current value Hamiltonian associated with problem P is given by: 

)1()(
1

1 1
1

nRRcRnRAk
c

H aC ,

where  and  represent the shadow prices of physical capital and natural resources, respectively. The first order condition 

for a maximum requires that the discounted Hamiltonian be maximized with respect to its control variables, that is: 

0c
c

HC ,

0)1( 21 RRnAk
n

HC

with the associated log-derivatives: 

c

c
,                                                                          (1) 

R

R

n

n

k

k
)1(                                                       (2) 

accompanied by the law of motion of each costate variable 

111 RnAk ,                                                             (3) 

)1( nR .                                                                   (4) 
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To add more, given the constraints on both physical and natural resources: 

cRnRAkk a

1)( ,

)1( nRRR                                                                         (5) 

and by means of the set of equations (1-4), we can derive, with a little bit of mathematical manipulation, the following 

four-dimensional system of first order differential equations, S1: 
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or rather the more tractable reduced three-dimensional system, S2: 

2xmxxx ,

xqqqq )1( ,
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by means of the convenient variable substitution: 
k

c
x , nRq , and 

k

y
m . This implies in growth rate terms 

that: k

k

c

c

x

x
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n
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q
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k

y

y

m

m
.

2. The Jacobian matrix of the reduced system S2 is then 

333231

232221

131211
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JJJ

JJJ

J

here: 

xJ11 , qJ 21 ,   031J ,

012J , qJ 22 , mJ32 ,

xJ13 ,   023J , mJ )1(33

hence, the Jacobian evaluated at the steady state finally becomes 
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3. Translation to the origin. Substitute xxx~ , mmm~ , qqq~  in the original system S2: 
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we find: 
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with the following non-linear terms in Taylor expansion: 
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4. Computation of the eigenvectors. Given: 
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The eigenvectors are thus the basis for the following transformation matrix, T, which transforms the equilibrium coor-

dinates: 
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5. To put system S2 in Jordan normal form, we need to calculate: 

TwfTTwJTw i

-1-1 ~
(0)

and derive: 

,

,,

,,

,,

))0(J(Tr00

00

00

,3213

,3212

,3211

3

2

1

3

2

1

wwwF

wwwF

wwwF

w

w

w

w

w

w

where: 

wTfzwTfzvzwTfzvwwwF
D 322133123
1

,3211

~~
)(

~
,, ,

wTfzuzuwTfzuzuwTfzuzuwwwF
D 312212133112332
1

,3212

~
)(

~
)(

~
)(,, ,

wTfuwTfvuuwTfvuwwwF
D 322313132
1

,3213

~~
)(

~
,,  , 

with 
1322312332

1
zvuzvuzuzu

D , and:

))(()(
~

33131211

2

312112
1

1 wzwwzwwuwzwwuwTf ,

2

32123212312112 )())((
~

wzwuwzwuwzwwuwTf ,

))(()(1
~

3313212

2

3313 wzwwzwuwzwwTf .

6. To allow a center manifold reduction, we assume the following relationship 
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to be stable over time, which implies also: 
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We explicitly assume: 

][
2

1
),( 2

23212

2

11213 wwwwwwhw ,

where: 

))0((

2

))0((

2

))0((

2

44))0((

2
1

121

22 JTr

C

JTr

C

JTr

C

JTr
C ,

22

421

4))0((

))0((24

2 JTr

JTrCCC
,

))0((

2

))0((

2

44))0((

2

))0((

2

3
21

22

2

JTr

C

JTr

C

JTrJTr

C
C .

To study the stability of periodic orbits around the steady state, we consider the Andronov-Hopf bifurcation coefficient: 
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or explicitly: 
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