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 VaR, CVaR AND TIME RULES WITH ELLIPTICAL 

 AND ASYMMETRIC STABLE DISTRIBUTED RETURNS�1

Fabio Lamantia*, Sergio Ortobelli**2, Svetlozar Rachev****3

Abstract

This paper proposes several parametric models to compute the portfolio VaR and CVaR 

in a given temporal horizon and for a given level of confidence. Firstly, we describe extension of 

the EWMA RiskMetrics model considering conditional elliptically distributed returns. Secondly, 

we examine several new models based on different stable Paretian distributional hypotheses of 

return portfolios. Finally, we discuss the applicability of temporal aggregation rules for each VaR 

and CVaR model proposed.  

Key words: Elliptical distributions, domain of attraction, stable distribution, time aggre-

gation rules. 

JEL Classification: G21, C32, C53. 

1. Introduction 

This paper presents and discusses risk management models with the same computational 

complexity of the most used ones in literature. In particular, the paper serves a threefold objective: 

1) studying and understanding elliptical EWMA VaR and CVaR models; 2) examining some dis-

tributional stable Paretian approaches applied to the evaluation of the risk of a given portfolio; 3) 

discussing the application and the limits of temporal aggregation rules of EWMA-type VaR and 

CVaR models.  

The Value at Risk (VaR) and the Conditional Value at Risk (CVaR) are simple risk 

measures used by financial institutions to evaluate the market risk exposure of their trading portfo-

lios. The main characteristic of VaR and CVaR is that of synthesizing, in a single value, the possi-

ble losses which could occur with a given probability in a given temporal horizon.  

An important issue in calculating VaR and CVaR is the identification of the so called 

profit/loss distribution. In the model proposed by RiskMetrics (see Longerstaey and Zangari, 

1996), the main assumption is that the profit/loss distribution, conditional upon the portfolio stan-

dard deviation, is Gaussian. The main consequence of this hypothesis is that the percentiles and the 

conditional expected loss, therefore VaR and CVaR, can be simply calculated by multiplying the 

portfolio standard deviation times a constant which is function of the given confidence level. On 

the other hand, the possibility of on-line “Gaussian” VaR and CVaR computation has represented 

the main “success” of these parametric models. As a matter of fact, in the last years there has been 

a growth in the number of those investors who prefer manage on-line their own portfolios. More-

over, to forecast the weekly, monthly, yearly losses under risk practitioners use scaling with oppor-

tune factor daily “Gaussian” VaR and CVaR estimates. However, although this temporal rule is 

very useful from a practical point of view, it is not generally valid except when we consider inde-

pendent Gaussian distributed returns. In addition, many empirical studies show that the return 

conditional distributions diverge from the Gaussian one. In particular, it has been observed that the 
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profit/loss distributions present asymmetries and fat tails. As shown in Longerstaey and Zangari 

(1996), the VaR calculated under the normal assumption underestimates the actual risk, given that 

the distribution of the observed financial series are leptokurtic with respect to those implied by a 

conditional normal distribution.  

This paper presents several alternative models for the calculation of VaR and CVaR tak-

ing into consideration the skewness and the kurtosis (fat tail effect) that mark the empirical 

profit/loss distributions. In order to maintain the simplicity of the RiskMetrics model we first ex-

tend it to an exponential weighted moving average (EWMA) model with conditional elliptically 

distributed returns and finite variance. In particular, we discuss the opportunity of using temporal 

rules of aggregated EWMA models that have not been correctly justified by RiskMetrics research-

ers (see Longerstaey and Zangari, 1996). Thus, we show that time aggregation rules can be used 

only when we assume independently distributed returns to approximate the future VaR and CVAR 

estimates, and then we focus our attention on returns with a conditional multivariate elliptical dis-

tributions. Secondly, we propose many stable Paretian VaR and CVaR models. Several empirical 

and theoretical studies on the asymptotic behavior of financial returns (see, among others, Man-

delbrot, 1963a-b; Fama, 1965) justify the assumption of stable paretian distributed returns. There-

fore, many stable models have been proposed in recent literature to study financial applications of 

the stable distributions (see Samorodnitsky and Taqqu, 1994; Rachev and Mittnik, 2000, and ref-

erences therein). In particular, Stoyanov et al. (2006) have proved some closed form solutions to 

compute conditional value at risk of a given elliptical and/or stable paretian distribution. However, 

all stable VaR models recently proposed in financial literature either describe simulating models 

(see Rachev et al., 2003) or propose models that do not take into account the dependence structure 

among asset returns and their autoregressive behavior (see, for example, Mittnik, et al., 2002). In 

contrast, in this paper we first present two parametric autoregressive stable models and we propose 

two relative time aggregation rules for the associated unconditional models where the return series 

are independent and identically distributed (i.i.d.). In the first stable model we consider conditional 

-stable sub-Gaussian distributed returns. The joint stable sub-Gaussian family is an elliptical fam-

ily that has been recently used in portfolio theory (see Rachev et al., 2004; Mittnik et al., 2002). As 

for the elliptical unconditional model with finite variance, we describe particular temporal rules of 

VaR and CVaR. In order to consider the asymmetry of financial series, we assume conditional 

jointly asymmetric -stable distributed returns. The asymmetric stable model results from a new 

conditional version of the stable three fund separation model proposed by Rachev et al., (2004) to 

study the portfolio choice problem with asymmetric returns. In this case too, when we assume that 

the returns series are i.i.d., we obtain further time aggregation rules for VaR and CVaR.  

The paper is organized as follows: in section 2 we formalize the RiskMetrics model and 

its elliptical extension. Section 3 introduces alternative approaches to the EWMA VaR and CVaR 

models with finite variance. Finally, we briefly summarize the paper. 

2. RiskMetrics approach and elliptical EWMA models with finite variance 

Value at Risk is the maximum loss among the best T % cases that could occur in a given 

temporal horizon. If we denote with  the investor's temporal horizon, with t tW WW� �  the 

profit/loss realized in the interval [t,t+ ] and with  the level of confidence, then VaR is given by 

the loss such that, 

� �^ `,[ , ] ( ) inf | Pr 1t t t t t tVaR W W q W W qT W W W T� � ��  � d ! � . (1) 

Hence, the VaR is the percentile at the (1- )% of the profit/loss distribution in the interval 

[t,t+ ]. The temporal horizon  and the level of confidence  are chosen by the investor. The choice 

of  depends on the frequency with which the investor wishes to control his/her investment. Alter-

natively to VaR, the recent literature on risk measures (see Szegö, 2004) has proposed the condi-

tional value at risk (CVaR), also called expected shortfall or expected tail loss, to evaluate the ex-

posure to market risks. The conditional value at risk is a coherent risk measure i.e. it is a positively 

homogeneous, translation invariant, subadditive and monotone risk measure. Even if there is no 
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doubt that -VaR  provides useful information, -VaR  is not a coherent risk measure (see Artzner 

et al., 1999; and Stoyanov et al., 2006) and it cannot offer exhaustive information about the ex-

pected future losses1. The conditional value at risk measures the expected value of profit/loss given 

that the Value at Risk has not been exceeded, that is  

� �
1

,[ , ] ,[ , ]
0

1
( )

1
t t t t q t t t tCVaR W W VaR W W dq

T

T W W W WT

�

� � � ��  �
� ³  (2) 

and if we assume a continuous distribution for the profit/loss distribution, we obtain 

� �,[ , ] ,( ) |t t t t t t t t tCVaR W W E W W W W VaRT W W W W T W� � � � ��  � � d . The RiskMetrics model as-

sumes that the conditional distribution of the continuously compounded return 

� �( ) log /t t tR W WWW �  is a Gaussian law. In particular, RiskMetrics simplifies the VaR calcu-

lation for those portfolios with many assets. If we denote with 1[ ,..., ] 'nw w w  the vector of the 

positions taken in n assets forming the portfolio, then the return portfolio at time t+1 is given by 

( ), 1 , 1
1

n

p t i i t
i

z w z� �
 

 ¦ ,

where � �, 1 , 1 ,log /i t i t i tz P P� �  is the (continuously compounded) return of i-th asset during the 

period [t,t+1], and ,i tP  is the price of i-th asset at time t. RiskMetrics assumes that within a short 

period of time, the expected return is null and that the return vector 

1 1, 1 , 1,..., 't t n tz z z� � �ª º ¬ ¼
follows a conditional joint Gaussian distribution. That is, every return conditioned on the fore-

casted volatility level is distributed like a standardized normal: � �1,0~/
1,1, Nz

ttiiti �� V  and any 

linear combination of the returns ( ), 1 1'p t tz w z� �  is conditionally normal distributed, i.e. 

( ), 1 ( ), 1/p t p t tz XV� � , where � �1,0~ NX ,
2
( ), 1/ 1/'p t t t tw Q wV � �  is the variance of port-

folio ( ), 1p tz �  and 
2

1/ , 1/t t ij t tQ V� �ª º ¬ ¼  is the forecasted variance covariance matrix. As far as 

the estimates of variances of the single assets 
2
, 1/ii t tV �  and the corresponding covariances 

2
, 1/ij t tV �  are concerned, RiskMetrics uses the exponentially weighted moving average model 

(EWMA). Thus, one estimates the variance and covariance matrix 1/t tQ �  considering the follow-

ing recursive formulas 

2 2 2 2
, 1/ , 1 , / 1 ,( ) (1 )ii t t t i t ii t t i tE z zV OV O� � �  � �  (3) 

2 2
, 1/ , 1 , 1 , / 1 , ,( ) (1 )ij t t t i t j t ij t t i t j tE z z z zV OV O� � � �  � � ,  (4) 

where  is the optimal smoothing factor (see Longerstaey and Zangari, 1996). In particular the 

conditional variance-covariance process 
2
, 1/t ij t tf V �  of 1tz �  is a martingale because 

                                                          
1 In literature we can find different definitions of VaR and CVaR that change slightly with respect to the use done of the 

risk measure. For example, in portfolio theory a positive risk measure is generally used, thus typically the above definitions 

change for the sign of VaR and CVaR functions.  
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� �2 2
, 1/ , 1/t ij t t ij t tE V V� �  and using the expectation operator at time t for any i and j, we can 

write the forecasted parameters over s 1 periods as 

� � � �� �
� �

2 2
, 1/ , / 1 1 , ,

2 2
, / 1 , 1/

( ) (1 )t t s t ij t s t s t ij t s t s t s i t s j t s

t ij t s t s ij t t t

E f E E E z z

E f

V OV O

V V

� � � � � � � � � � �

� � � �

  � �  

   
.

The EWMA model is an IGARCH(1,1) (integrated generalized auto-regressive condi-

tional heteroskedastic) model. GARCH-type models provide an alternative view to volatility esti-

mation. There is a growing literature on such models and we refer to Duffie and Pan (1997) for 

their application to VaR.  

The explicit modeling of the volatility series captures the time-varying persistent volatil-

ity observed in real financial markets. Under the normality assumption for the conditional returns, 

the Value at Risk of ( ), 1p tz �  at (1- )% conditional the information available at time t (denoted by 

, 1/t tVaRT � ) is given by simply multiplying the volatility forecast in the period [t,t+1], times the 

tabulated value of the corresponding standard Gaussian percentile, 1k T� , therefore, 

, 1/ ( ), 1 1 ( ), 1/( )t t p t p t tVaR z kT TV� � � � .  (5) 

We observe that a similar simplification is also valid for the Conditional Value at Risk of 

portfolio ( ), 1p tz �  at (1- )% conditional the information available at time t (denoted by 

, 1/t tCVaRT � ); i.e. CVaR is given by multiplying the volatility forecast in the period [t,t+1], 

times the tabulated value of the corresponding standard Gaussian CVaR, 

1 1( / )c E X X kT T� � d  where X~N(0,1) (see Stoyanov et al., 2006). Thus, 

, 1/ ( ), 1 1 ( ), 1/( )t t p t p t tCVaR z cT TV� � � � .  (6) 

Moreover, in all the following discussion we continue to call the VaR and CVaR condi-

tional the information available at time t simply VaR and CVaR. In addition, we can also study 

temporal aggregation rules of EWMA models. 

2.1. Time rules 

Let us recall that Engle and Bollerslev (1986), Drost and Nijman (1993), Meddahi and 

Renault (2004), Hafner and Rombouts (2003) have studied and proved the temporal aggregation of 

weak GARCH-type processes and volatility models. They have adopted three definitions of 

GARCH-type models of increasing generality. In particular, a strong GARCH-type requires that 

rescaled innovations are independent, while in weak GARCH-type models only projections of the 

conditional variance are considered. Since strong aggregated GARCH-type processes are generally 

weak GARCH-type processes (see Drost and Nijman, 1993), then the distribution of the aggre-

gated process changes even if the main structural characteristics of the model are maintained. 

Thus, most of the time rules verified for the conditional variance cannot be applied to compute 

percentiles of the aggregated process because we do not know a priori the distribution of the ag-

gregated process. However, many practitioners apply time rules to compute the VaR and CVaR for 

short time aggregation even for these conditional models.  

Let us assume that a sample path of 1-day return vectors ^ `
NttZ �  follows the Gaussian 

EWMA model above. Under these assumptions the vector of returns 1 1, 1 , 1,..., 't t n tz z z� � �ª º ¬ ¼
follows a strong IGARCH(1,1), that is also a particular ISR-SARV(1) process (Integrated Square-

Root Stochastic Autoregressive Volatility process i.e., � �1 0t tE z �   and 
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� � � �1 1 2 2' 't t t t t tE z z U E z z� � � ��   where U is a constant semi-definite positive matrix1). 

Then 1 1/ 1t t t tz H� � � 6  is conditionally Gaussian distributed, where the conditional variance 

covariance matrix 1/ 1/ 1/'t t t t t tQ � � � 6 6  of 1tz �  at time t follows the above recursive formulas 

(3), (4) and the vectors ^ `
Ntt �H  are i.i.d. standard Gaussian distributed N(0,I) (I is the identity 

matrix). Thus, the conditional distribution of T-day vector of returns 

'

1, , / 1
1 1

,...,
T T

t T t T n t T t s t s t s t s
s s

Z Z Z z H� � � � � � � �
  

ª º   6¬ ¼ ¦ ¦  (where � �, , ,log |i t T i t T i tZ P P� � )

is a mixture of Gaussian vectors. Using the same arguments of Meddahi and Renault (2004), the 

corresponding sample path of T-day returns ^ `
NkkTtZ ��  is still an ISR-SARV(1) process. Alterna-

tively to the above EWMA model, we can assume additive values ,ij tu  in the high frequency 

IGARCH(1,1) process  

2 2
, 1/ , / 1 , , ,(1 )ij t t ij t t i t j t ij tz z uV OV O� � � � �  (7) 

with constant definite positive matrix ,[ ]ij tU u . In this case the valuation of the parameters 

corresponding to the aggregated ISR-SARV(1) process t TZ �  follows the rules explained in Med-

dahi and Renault (2004). Moreover, these parameters depend on the error in the approximation of 

decay factor  in (3), (4) computed for the high frequency process because the effect of this mis-

specification grows when the time T increases. Thus, the error in the estimation can influence dra-

matically the computation of the variance process. In this context, Kondor (2005) has proved that 

the decay factor  must be near to 1 and we need many more observations than what suggested by 

RiskMetrics in order to reduce the amount of error in the approximation. On the other hand, the 

conditional variance-covariance matrix of t TZ �  at time t for the EWMA model follows the rules 

of aggregated ISR-SARV(1) process. In view of Meddahi and Renault’s analysis, the aggregated 

process maintains the main structural characteristic of Gaussian EWMA model, but it is not gener-

ally a strong Gaussian IGARCH process. Therefore the classical time rule 
2

/1,

2

/,
~

ttijtTtij T ��  VV

applied for variance covariance matrix > @2

/,/
~~

tTtijtTtQ ��  V of Gaussian aggregated processes 

t TZ �  is not generally valid except for independent identically distributed returns. Even if it has 

not been justified by RiskMetrics researchers (see Longerstaey and Zangari, 1996) it is common 

practice to predict the VaR and CVaR at time t for different temporal horizons assuming the ap-

proximating time aggregation rules:  

, / 1 ( ), /( ' )t T t t T p t T tVaR w Z kT TV� � � �| , and 

, / 1 ( ), /( ' )t T t t T p t T tCVaR w Z cT TV� � � �| ,

where � � wQw
tTttTtp //,

~
'

��  V . However, this approximated result could lead to mistakes be-

cause the distributional structure of the aggregated process is not as strong as the original Gaussian 

IGARCH. Thus, when the temporal horizon T is not too big (say ten days, see Lamantia et al., 

2006), the following time rules: 

, / , 1/t T t t tVaR TVaRT T� �| , (8) 

, / , 1/t T t t tCVaR TCVaRT T� �| , (9) 

                                                          
1 The semi-definite positive matrix U is equal to zero when we consider EWMA models. 
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are generally used by practitioners to forecast the (1- )% VaR and CVaR in the period [t,t+T] of 

EWMA Gaussian models. However, as underlined, by Diebold et al. (1998a-b), these time rules 

can be applied to compute VaR and CVaR only when the returns are independent and identically 

distributed. 

2.2. Limits and advantages of EWMA models 

The main advantage and success of the EWMA model applied to the computation of VaR 

and CVaR are due to its simplicity and applicability to large portfolios. In addition, simple time 

rules allow for forecasts of VaR and CVaR of the future wealth under the hypothesis that the vec-

tors of returns are jointly independent and identically distributed. The previous temporal rules 

simplify the computation of the minimum loss and the average loss that a portfolio can suffer in 

the T % worst cases in a temporal horizon greater than unity. In contrast, EWMA model is not a 

strictly stationary process and the variance process converges a.s. to zero. If we assume the high 

frequency strong IGARCH(1,1) process (on the marginal distributions, or on the portfolios) 

2 2 2
, 1/ , / 1 , ,(1 )ii t t ii t t i t ii tz uV OV O� � � � �  with , 0ii tu ! , then the process is strictly stationary, 

but not second-order stationary since the second moment is infinite (see Nelson, 1990). Even if the 

second moment of the residuals is not finite, the conditional variance is well defined since the 

squared residual process is non-negative. In the case of strictly stationary IGARCH (1,1), portfolio 

VaR and CVaR for the temporal horizon T cannot be derived by the rules of aggregated condi-

tional variance process explained in Meddahi and Renault (2004). However in practice, practitio-

ners use these time rules even if these are generally applied only for limited temporal horizon T.

Therefore, we generally agree with the main critics on the use of temporal aggregation rules for 

long temporal horizons (see, among others, Diebold et al., 1998a-b) for two important reasons. 

First of all, the distributional structure of the aggregated process generally changes. Secondly, the 

effects of the empirical error in the parameter estimation of high frequency process generally grow 

when the time T increases. As a matter of fact, even if the Gaussian IGARGH(1,1) model presents 

good performance at high frequency, say daily or intraday returns, the Gaussian IGARCH(1,1) is 

often rejected at low frequency (see Lamantia et al., 2006). A potential explanation of this aspect is 

the long memory in the volatility of these Gaussian GARCH-type models (see, for instance, 

Bollerslev and Mikkelsen, 1996; Comte and Renault, 1998). However, the temporal aggregation of 

long memory volatility models does not enter in the main objectives of this paper. As far as large 

portfolios or on-line VaR and CVaR calculation are concerned, the implementation of strictly sta-

tionary GARCH-type models should be evaluated on the basis of the tradeoff between costs and 

benefits. On the other hand, the computational simplicity of the VaR time rule and its validity 

when unconditional independent Gaussian returns are considered, are the main reasons why the 

Gaussian time rule is still largely used. In addition, considering that the composition of large port-

folios of institutional operators frequently change, then the application of time rules is often lim-

ited over time. Thus, in contrast to their non-stationariness, the EWMA type models are still sim-

ple versatile tools to estimate the risk financial expositions. This is a further reason to investigate 

on the financial impact of non Gaussian EWMA models and their temporal aggregation that, gen-

erally, do not present an excessive computational complexity even for large portfolios.  

2.3. Elliptical non Gaussian EWMA models with finite variance  

Recall that we say that an n-dimensional vector z is elliptically distributed with parame-

ters P , Q and f if for some 
nRP �  and some n nu  nonnegative definite symmetric matrix Q 

the characteristic function ( )z tP�)  of z P�  is a function of the quadratic form 't Qt , i.e. 

� �( ) 'z t f t QtP�)   and we write  

� �fQEllz n ,,~ P .
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Observe that a vector � �fQEllz n ,,~ P  with � �rank Q s  if and only if there exists 

a random variable 0B t  independent of U, an s-dimensional random vector uniformly distrib-

uted on the unit hypersphere ^ `sS / ' 1su R u u �   and an n su  matrix 6  with ' Q66  
such that  

d

z B UP � 6 .

Given an elliptical vector z, its representation ( , , )nEll Q fP  is not unique. It uniquely de-

termines P  but Q  and f are only determined up to a positive constant. In particular, if the vector 

z is elliptical with finite variance, we can always choose the vector P  equal to the mean and the 

dispersion matrix Q equal to the variance covariance matrix. Therefore, in the following discussion 

when we assume elliptical vectors with finite variance � �fQEllz n ,,~ P  we implicitly suppose 

that ( )E zP   is the mean vector, Q is the variance covariance matrix of z, and the characteristic 

function of the centered vector is given by � �( ) ( ) 'z E z t f t Qt�)  . The function f  is also 

called characteristic generator. When n=1 a class of elliptical distributions coincides with a class 

of one-dimensional symmetric distributions uniquely determined by its characteristic function f.

For further details on elliptical distributions we refer to Cambanis et al. (1981), Owen and Rabino-

vitch (1983) and Fang et al. (1987).  

The RiskMetrics model is a particular EWMA model with conditional elliptically distrib-

uted returns and finite variance. In this class of EWMA models the vector 

'

1 1, 1 , 1,...,t t n tz z z� � �ª º ¬ ¼  is conditionally elliptically distributed with finite variance, null mean 

and conditional characteristic function 

1

1

'
1/( ) ( ) ( ' )t

t

im z
z t t tm E e f m Q m�
� �)   ,

where 
2

1/ , 1/t t ij t tQ V� �ª º ¬ ¼  is the variance covariance matrix that, for simplicity, we assume is 

invertible. Therefore, under these assumptions:  

1 1/ 1 1t t t t tz B U� � � � 6 ,

where 1tB �  is the positive random variable independent of vector 1tU �  which characterizes the 

elliptical family. In addition, 1tB � 1tU � t=0,…,T are i.i.d. n-dimensional vectors (because Q is 

invertible) where 1tU �  are uniformly distributed on the unit hypersphere nS , while the entries of 

variance and covariance matrix 1/ 1/ 1/'t t t t t tQ � � � 6 6  follow the above formulas (3) (4) i.e. 

1/ / 1 (1 ) 't t t t t tQ Q z zO O� � � � .

Moreover, under these assumptions, the aggregated process is a particular ISR-SARV(1) 

process (see Meddahi and Renault, 2004) and the conditional distribution of 
1

T

t T t s
s

Z z� �
 

 ¦ is a 

mixture of elliptical 1/(0, , )n t tEll Q f�  vectors. The Value at Risk of portfolio ( ), 1 1'p t tz w z� � ,

at (1- )% is given by 

1, 1/ ( ), 1 ( ), 1/( )t t p t p t tVaR z k TT V�� � �  (10) 

where 
2
( ), 1/ 1/'p t t t tw Q wV � �  is the portfolio variance forecasted in the period [t,t+1] and 

1k T�  is the tabulated value of the corresponding elliptical 1(0,1, )Ell f  percentile uniquely deter-
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mined by the characteristic generator f . Similarly, the Conditional Value at Risk of portfo-

lio ( ), 1p tz �  at (1- )% level is given by 

1, 1/ ( ), 1 ( ), 1/( )t t p t p t tCVaR z c TT V�� � � , (11) 

where 1 ( )c CVaR XT T�   is the tabulated CVaR value of the corresponding elliptical 

1(0,1, )Ell f  determined by its characteristic generator f  (see Stoyanov et al., 2006). In addition, 

among the elliptical models with finite variance, the RiskMetrics Gaussian unconditional model is 

the unique for which the temporal rules (8) and (9) can be used when the portfolios of returns are 

independent identically distributed. As a matter of fact, the Gaussian law is the unique elliptical 

distribution with finite variance such that the sum of elliptical i.i.d. random variables belongs to 

the same family of elliptical random variables, that is, the unconditional distributions of vectors  

'

1 1, 1 , 1,...,t t n tz z z� � �ª º ¬ ¼  and 
'

1, ,
1

,...,
T

t T t s t T n t T
s

Z z Z Z� � � �
 

ª º  ¬ ¼¦

belong to the same elliptical family with finite variance (0, , )nEll Q f  only if 

/ 1t s t s t s t sz H� � � � � 6  (s=1,...,T) are independent Gaussian distributed (that is do not follow the 

above EWMA model). However, we could prove a further time aggregation rule of VaR consider-

ing t sz �  (s=1,...,T) i.i.d. distributed and such that � �fQEllz ttnt ,,0~ /11 ��  and 

� �fQEllz tTtnTt

~
,

~
,0~ /��  admit different elliptically distributed returns with characteristic gen-

erators ,f f . As a matter of fact, we recall that the sum of elliptical i.i.d. random variables is el-

liptically distributed but it does not necessarily belong to the same elliptical family (see Embrechts 

et al., 2003). For example, the sum of T i.i.d. univariate elliptical � �fEllX ns ,1,0~  (s=1,...,T) 

with characteristic function f, gives another symmetric random variable which is differently ellipti-

cally distributed with characteristic function f  and variance equal to the sum of variances, i.e. 

� �fEllTX t

T

s

s

~
,1,0~

1

¦
 

. Similarly, if we sum T i.i.d. elliptical random vectors 

� �fQEllz ttnst ,,0~ /1��  (s=1,…,T), then we obtain � �fQEllzZ tTtn

T

s

stTt

~
,

~
,0~ /

1

�
 

�� ¦ 

where the variance covariance matrix of t TZ �  is given by > @ tttTtijtTt TQQ /1

2

/,/
~~

���   V . Thus, 

when the vector of returns are i.i.d. elliptically distributed, we can apply the variance temporal rule 

to estimate at time t the (1- )% VaR and CVaR in the periods [t,t+1] and [t,t+T], that is 

, 1/ ( ), 1 1,1 ( ), 1/( )t t p t p t tVaR z kT TV� � � �  and the temporal aggregation rule  

, / 2,1 ( ), 1/ , 1/t T t p t t t tVaR k T M TVaRT T T TV� � � �|   (12) 

holds where 
2,1

1,1

k
M

k

T
T

T

�

�
 , and 1,1 2,1,k kT T� �  are respectively the corresponding 1-  elliptical 

1 1(0,1, ); (0,1, )Ell f Ell f percentiles. Similarly, we have that 

, 1/ ( ), 1 1,1 ( ), 1/( )t t p t p t tCVaR z cT TV� � � �  and

� � ttttptTt CVaRTMTcCVaR /1,/1,1,2/,

~
����  | TTTT V , (13) 
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Where 

T

T
T

�

� 
1,1

1,2~

c

c
M , and 1,1 2,1,c cT T� �  are respectively the corresponding 1-  elliptical 

1 1(0,1, ); (0,1, )Ell f Ell f  conditional value at risk values. However, even if the above time rules 

are always theoretically justified when we assume log return processes with stationary and inde-

pendent increments, they are not theoretically justified when we consider time aggregation of 

EWMA models. Moreover, we need to evaluate the 1-  percentile 2,1k T�  and the associated con-

ditional value at risk 2,1c T� of the standardized sum of m i.i.d. elliptical distributions 1(0,1, )Ell f

(s=1,...,T), that is elliptical 1(0,1, )Ell f  distributed. Thus, we can find the 1-  percentile 2,1k T�

and the associated conditional value at risk 2,1c T� considering the distribution 1(0,1, )Ell f  de-

rived from the convolution of i.i.d. random variables 1(0,1, )Ell f  distributed. All the above mod-

els and the following ones have been studied thorough an ex-post empirical comparison in a sepa-

rate paper. Thus, a detailed discussion on the estimation of the parameters of each model has been 

done in Lamantia et al. (2006). 

3. Alternative VaR and CVaR models with stable distributions 

In this section we present some alternative models to compute VaR and CVaR. In particu-

lar, we focus our attention on two different stable models for the profit/loss distribution. A random 

variable X is stable distributed if it has a domain of attraction. That is, there exists a sequence of 

i.i.d. random variables ^ `
NiiY � , a sequence of positive real values ^ `

Niid �  and a sequence of real 

values ^ `
Niia �  such that, as n +

1

1 n
d

i n
in

Y a X
d  

� ��o¦ ,

where "
d��o  " shows the convergence in the distribution. Thus, the -stable random variables 

describe a general class of distributions including the leptokurtic and asymmetric ones. The -

stable distribution is identified by four parameters: the index of stability �(0,2], the skewness 

parameter �[-1,1]; ��  and J ���  which are, respectively, the location and the dispersion 

parameter. If X is a random variable whose distribution is -stable, we use the following notation 

to underline the parameter dependence: 

� �.,,~ GEJDSX � .

When =2, the -stable distribution has a Gaussian density. A positive skewness parame-

ter ( >0) identifies distributions whose tails are more extended towards the right, while a negative 

skewness parameter ( <0) characterizes distributions whose tails are extended towards the nega-

tive values of the distribution. A detailed analysis of stable distribution properties can be found in 

Samorodnitsky and Taqqu (1994). 

The Functional Central Limit Theorem for normalized sums of i.i.d. random variables 

theoretically justifies the stable Paretian approach proposed by Mandelbrot (1963a-b) and Fama 

(1965) to model the behavior of asset returns. However, there is a considerable debate in literature 

concerning the applicability of -stable distributions as they appear in Lévy's central limit theo-

rems. A serious drawback of Lévy's approach is that in practice one can never know whether the 

underlying distribution is heavy tailed, or just has a long but truncated tail. Limit theorems for sta-

ble laws are not robust with respect to truncation of the tail or with respect to any change from 

light to heavy tail, or conversely. Based on finite samples, one can never justify the specification 

of a particular tail behavior. Hence, one cannot justify the applicability of classical limit theorems 
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in probability theory. Therefore, instead of relying on limit theorems, we can use the so-called pre-

limit theorems which provide an approximation for distribution functions in case the number of 

observation T is "large" but not too "large". We refer to Klebanov et al. (2001) Klebanov et al. 

(2000), and paragraph 2.5 of Rachev and Mittnik (2000) for a theoretical description of pre-limit 

theorems considering that a formal analysis of these results is beyond the scope of this paper. In 

particular the "pre-limiting" approach helps to overcome the drawback of Lévy-type central limit 

theorems. As a matter of fact, we can assume that returns are bounded "far away", for example, 

say daily returns cannot be outside the interval [-0.5,0.5]. Thus, considering the empirical observa-

tion on asset returns, we can assume that the asset returns zi are truncated i-stable distributed with 

support, [-0.5,0.5]. Thus pre-limit theorems show that, for any reasonable number of observations 

T, the truncated stable laws will be well approximated by a stable law. Next, we propose two pa-

rametric stable models. The main advantages of the following parametric models are: 

1. a better empirical approximation than the RiskMetrics model; 

2. the same computational complexity as the RiskMetrics model after parameters esti-

mation; 

3. VaR and CVaR time rules: 

, / 1 , 1/( )t T t t tVaR f T VaRT T� �| ,

, / 2 , 1/( )t T t t tCVaR f T CVaRT T� �| ,

obtained when the returns are independent identically stable distributed. 

3.1. A parametric model with symmetric -stable distributed returns  

In this subsection, we propose an exponentially weighted moving average model with -

stable distributions (2> >1) that generalizes the classical EWMA model with Gaussian distribu-

tion (see Longerstaey and Zangari, 1996). In particular, we assume that the conditional distribution 

of the vector of returns 1 1, 1 , 1,..., 't t n tz z z� � �ª º ¬ ¼  is -stable sub-Gaussian (in the period [t,t+1]) 

with characteristic function 

� �� �1

1

/ 2'
1/ 1( ) ( ) exp ' 't

t

im z
z t t t tm E e m Q m im

D P�
� � �)   � � ,

where 
2

1/ , 1/t t ij t tQ V� �ª º ¬ ¼  is the conditional dispersion matrix (that we assume is invertible) 

and � �1 1t tE zP � �  even if we assume that within a short period of time the expected return is 

null. However, before describing the EWMA model with -stable sub-Gaussian distributions, 

called the stable EWMA model, we describe some properties of the stable sub-Gaussian vectors. 

3.1.1. Unconditional -stable sub-Gaussian distribution 

A stable sub-Gaussian law is the elliptical extension of a Gaussian law when the variance 

is infinite. It is just one very particular stable law among the stable ones. In particular, an uncondi-

tional -stable sub-Gaussian n-dimensional vector z with <2 and characteristic function 

� �� �/ 2
( ) exp ' 'z m m Vm im

D P)  � �  is an elliptically distributed vector with n nu  disper-

sion matrix 
2
ijV vª º ¬ ¼  and infinite variance. While, if =2, the vector is Gaussian distributed. As 

any elliptical vector, even the vector z does not admit a unique representation. In order to fix one 

for any (1,2)D � , we can write

z BGP � 6 ,
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where Ba

2

2 2 cos ,1, 0
4

S

D

D
SD§ ·§ ·§ ·¨ ¸¨ ¸¨ ¸¨ ¸© ¹© ¹© ¹

 is /2-stable random variable (called stable sub-

ordinator) independent of Gaussian vector � �1,0~]',...[ 1 NGGG n  with identity covariance 

matrix. In addition, B G  is also an D -stable sub-Gaussian vector where the components 

iH = B iG  are (1,0,0)SD  distributed, while the dispersion matrix V (that for simplicity we 

consider invertible) is obtained by the n nu  matrix 6  i.e. 
2 'ijV vª º  66¬ ¼ . The term 

2
ijv , that 

we call codispersion between asset i and asset j, is defined by 

22 [ , ]ij i j jv z z z
D

D D

�
 , (14) 

where i i iz z P �  is the centered variable, 

2

1
[ , ] sgn( ) ( )i j i j j ij

S

z z s s s ds
D

D J
�

 ³  is the 

covariation between two jointly symmetric D stable random variables ,i jz z  and ij(ds) is the 

spectral measure with support on the unit circle S2. In particular, 

2

1
1

( ) ([ , ] )i i ii i i
S

z s ds z z
DD D

DD J
§ ·

  ¨ ¸¨ ¸
© ¹
³ . Using properties 1.2.17 and 2.7.16 in Samorod-

nitsky and Taqqu (1994) we can write for every q�(1, )

� �1

[ , ]
q

i ji j

q

j j

E z zz z

z E z

D
D

D

�

 
§ ·
¨ ¸
© ¹

,

where 
11

sgn( )
qq

j jjz z z
��   and for every p�(0, ) the scale parameter can be written 

1 2

0

1

sin

2 (1 )

p

p pp
j jjj p

p u udu

v z E z
pD D

f
� �

�
§ ·  ¨ ¸
© ¹* �

³
.

Besides,
1 2

0

1
2

sin
1

2
2

p

p

u udu
p

p

Sf
� �

§ ·* �¨ ¸
© ¹ 

�§ ·*¨ ¸
© ¹

³  for every p�(0,2). Then, it follows that 

for every q�(1, ):

� �
� � � �

1

2 12 2

q
i j q q

ij jj ijj jq

j

E z z
v v v A q E z z

E z

� � !
� � � !  

§ ·
¨ ¸
© ¹

 (15) 



Investment Management and Financial Innovations, Volume 3, Issue 4, 200630

where � �
1

2

1
2 1

2

q

q

A q
q q

S

D

§ ·* �¨ ¸
© ¹ 

�§ · § ·* � *¨ ¸ ¨ ¸
© ¹ © ¹

. In addition, from relations (14) and (15) we obtain for 

every q� (1, )

� �1
[ , ] ( )

qq
i j ijj jz z v A q E z z

D
D

�� .  (16) 

Moreover the codispersion between two components of a stable sub-Gaussian vector can 

be obtained using the symmetry of the dispersion matrix 
2
ijV vª º ¬ ¼ . As a matter of fact, consider 

the -stable sub-Gaussian vector z with dispersion matrix respectively 
2
ijV vª º ¬ ¼ , then the sum 

zi+zj is still -stable distributed with dispersion 
2 2 2 2 2

, ,: 2
i j i jz z z z i j i j ii jj ijv v v v v� � � �  � � , thus 

we get that  

2 2 2
,2

2

i j i j ii jj
ij

v v v
v

� � � �
 .  (17) 

This result suggests the following estimator 
2
ijV v

ª º « »¬ ¼
 for the entries of the unknown 

covariation matrix for some q�(1, ):

2 22
,2

ˆ
ˆ

2

jj iii j i j
ij

v v v
v

� � � �
 ,

where 
2
jjv and

2
,î j i jv � �  are estimated as follows for some p�(0, )

2
2 ( )

1

1
( )

p
N p

k
jj j

k

v A p z
N  

§ ·
 ¨ ¸
© ¹

¦ ,

2
( ) ( )2

,
1

1
ˆ ( )

p
N p

k k
i j i j i j

k

v A p z z
N

� �
 

§ ·
 �¨ ¸
© ¹

¦ .

Moreover, regarding the sum of independent -stable sub-Gaussian vectors, the following 

lemma holds. 

Lemma 1: Let 
'

( ) ( ) ( )
1 2,k k kZ Z Zª º ¬ ¼  k=1,2,...,T be T independent -stable sub-

Gaussian vectors ( >1) with null mean and dispersion matrixes respectively 
( ) 2

( ),
k

k ijV vª º ¬ ¼ ,

i,j=1,2 k=1,2,...,T. Then 

'
( ) ( ) ( )

1 2
1 1 1

,
T T T

k k k

k k k

Z Z Z Z
   

ª º
  « »

¬ ¼
¦ ¦ ¦  is still symmetric with null 

mean and

.
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Proof: It is well known that the sum of independent -stable vectors is -stable. Observe 

that the collections ^ `( )
1

1,...,

k

k T
Z

 
, ^ `( )

2
1,...,

k

k T
Z

 
 are collections of independent random 

variables and, for any m n,
( )

2
mZ  and 

( )
1

nZ  are also independent. Then, as a consequence of 

properties 2.7.7, 2.7.11 and 2.7.15 in Samorodnitsky and Taqqu (1994) we obtain 

( ) ( ) ( ) ( )
1 2 1 2

1 1 1

, ,
T T T

k k k k

k k k

Z Z Z Z
DD   

ª º ª º « » ¬ ¼¬ ¼
¦ ¦ ¦ . Thus, from (16) we get that, for every 

q�(1, ),

where the last equality is verified because the first equality must be true even for . As a con-

sequence of formula (14), 

2
( ),12( ) ( )

1 2 2
( ),22

,
kk k

k

v
Z Z

v DD �
ª º  ¬ ¼ , thus the thesis follows. ฀

Even if 
'

( ) ( ) ( )
1 2,k k kZ Z Zª º ¬ ¼ k=1,2,...,T are T independent -stable sub-Gaussian 

vectors,
( )

1

T
k

k

Z Z
 

 ¦  is symmetric -stable distributed, but it is not generally -stable sub-

Gaussian distributed (a simple counterexample is given by example 2.13 in Samorodnisky and 

Taqqu, 1994). Moreover if 
( )

1

T
k

k

Z Z
 

 ¦  is -stable sub-Gaussian, then the entries of dispersion 

matrix 
2
ijV vª º ¬ ¼  are given by ( ),

1

T

jj k jj
k

v vD D

 
 ¦  and 

2
2
( ),2

( ), 2
1 1 ( ),

T T k ij
ij k jj

k k k jj

v
v v

v

D
DD

D

�

�
  

§ ·§ · ¨ ¸ ¨ ¸ ¨ ¸© ¹ © ¹
¦ ¦  where 

i,j=1,2. As a matter of fact, it is well known that the dispersion of sum of independent -stable

random variables with dispersion ( ),k jjv  k=1,…,T satisfies the relation ( ),
1

T

jj k jj
k

v vD D

 
 ¦ . On the 

other hand, by the previous Lemma we deduce that the codispersion is given by: 
2

2 ( ) ( ) ( )
12 2 1 2

1 1

,
T T

k k k

k k

v Z Z Z

D

DD

�

  

§ ·ª º ¨ ¸¬ ¼© ¹
¦ ¦ .

Thus, it follows 

2
2
( ),2

( ), 2
1 1 ( ),

T T k ij
ij k jj

k k k jj

v
v v

v

D
DD

D

�

�
  

§ ·§ · ¨ ¸ ¨ ¸ ¨ ¸© ¹ © ¹
¦ ¦ . A very particular example is the 

sum of T i.i.d. -stable sub-Gaussian vectors with null mean and dispersion matrix 
2
ijW wª º ¬ ¼ ,

that is an -stable sub-Gaussian vector with null mean and dispersion matrix WTW D/2~  .
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As a consequence of the symmetry of -stable sub-Gaussian random variables, for any 

p< , the dispersion 
p
jjv  of the centered random variable jz  can be seen as the variance of the 

random variable � �2 sgn ( )

p

j jz z A p  i.e. � �2variance sgn ( )

p
p

j jjjv z z A p
§ ·
¨ ¸ 
¨ ¸
© ¹

 for 

any p< . Then, if the sum 
1

T

k
k

X z
 

 ¦  of T independent centered -stable symmetric random 

variables zj, j=1,2,...,T, satisfies the following relation for any p< ,

The third equality above derives from the previous discussion, while the last equality is a conse-

quence of the independence of random variables � �2 sgn ( )

p

j jz z A p , j=1,2,...,T.

3.1.2. The Stable EWMA model 

Suppose that the conditional distribution of the returns vector 

1 1, 1 , 1,..., 't t n tz z z� � �ª º ¬ ¼  is -stable sub-Gaussian ( �(1,2)) with characteristic function 

� �� �1

1

/ 2'
1/ 1( ) ( ) exp ' 't

t

im z
z t t t tm E e m Q m im

D P�
� � �)   � � .

Under these assumptions we assume  

1 1 1/ 1 1t t t t t tz B GP� � � � � � 6 ,

where Bt+1a

2

2 2 cos ,1, 0
4

S

D

D
SD§ ·§ ·§ ·¨ ¸¨ ¸¨ ¸¨ ¸© ¹© ¹© ¹

 is a stable subordinator independent of Gaus-

sian vector � �1,0~]',...,[ 1,1,11 NGGG tntt ���   with identity covariance matrix. In addition, 

1tB � 1tG � t=0,…,T are i.i.d. D -stable sub-Gaussian vectors, where the components 

, 1i tH � = 1 , 1t i tB G� �  are (1,0,0)SD  distributed, while the entries of dispersion matrix 

2
1/ , 1/ 1/ 1/'t t ij t t t t t tQ V� � � �ª º  6 6¬ ¼  are generated as follows: 

, 1 , 1 , 1 , 1/ , 1i t i t i t ii t t i tz z P V H� � � � � �  

� �, 1 ,, 1/ , / 1( ) (1 ) ( )
p pp p

t i t i tii t t ii t tE z A p A p zV OV O�� �  � �   (18) 

2
, 1 , 1 , , / 1 , ,, , 1/ ( ) (1 ) ( )

p p
p

t i t j t i j i j t t i t j ti j i j t t E z z A p A p z zV OV O� � � � �� � �
§ · �  � � �¨ ¸
© ¹
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2 2 2
, , 1/ , 1/ , 1/2

, 1/
2

i j i j t t jj t t ii t t
ij t t

V V V
V � � � � �

�
� �

 ,  (19) 

where � �
1

2

1
2 1

2

q

q

A q
q q

S

D

§ ·* �¨ ¸
© ¹ 

�§ · § ·* � *¨ ¸ ¨ ¸
© ¹ © ¹

, p�(0, ),  is the decay factor that regulates 

the weighting on past covariation parameters. These assumptions are consistent with the structure 

of dispersion matrix of an -stable sub-Gaussian vector. In fact, we require that 

2/
2 2

, 1 , 1 , 1/ , 1/
2
, 1/

( )

2

p
p

t i t j t jj t t ii t t

ij t t

E z z A p V V
V

� � � �

�

§ ·§ ·� � �¨ ¸¨ ¸© ¹© ¹  and 

� �, 1, 1/ ( )
pp

t i tii t t E z A pV ��  . The scale parameter of i-th return, , 1/ii t tV � , is given by 

� � � �
1/1/

, 1/ , 1 ,
0

( ) 1 ( )

pp Kp pK k
ii t t t i t i t K k

k

E z A p A p zV O O �
� � � �

 

§ ·§ · | �¨ ¸ ¨ ¸© ¹ © ¹
¦ ,

where for any given tolerance level � �
1

1 k

k K

tl O O
f

 �
 � ¦  we can determine the number of use-

ful observations 
log( )

log( )

tl
K

O
  as per the RiskMetrics model. Thus, considering a tolerance level 

tl=0.001 and a decay factor =0.97 we obtain that 228~�K . Similarly the scale parameter of the 

sum , 1 , 1i t j tz z� ��  is given by  

� �
1/ 1/

, , 1/ , 1 , 1 , ,
0

( ) 1 ( )

p p
Kp pK k

i j i j t t t i t j t i t K k j t K k
k

E z z A p A p z zV O O �
� � � � � � � � �

 

§ · § ·§ · � | � �¨ ¸¨ ¸ ¨ ¸© ¹ © ¹© ¹
¦ .

Instead 
2
, 1/ij t tV �  is the stable covariation parameter between the i-th and the j-th returns 

and it holds from formula (19). Observe that the decay factor  determines the relative weights that 

are applied to return observations. Thus, the most recent observations are more weighted than the 

old ones. Thus, the above model is a particular Stable GARCH(1,1) model (see, among others, 

Rachev and Mittnik, 2000) and it is also an EWMA model and an ISR-SARV(1) process applied 

to the random variables � �2
, , ,sgn ( )

p

j t j t j tX z z A p , because the dispersion , 1/
p
jj t tV �  is 

the conditional variance of , 1j tX �  for every j=1,2,...,n.

Under these assumptions, any portfolio is defined by 

( ), 1 , 1 1/ 1
1

'
n

p t i i t t t t
i

z w z w Q wH� � � �
 

  ¦  where � �0,0,1~
1 DH St ��  and 

2
1/ , 1/t t ij t tQ V� �ª º ¬ ¼ . Then, the (1- )% VaR in the period [t,t+1] is obtained by multiplying the 

corresponding percentile, 1 ,k T D� , of the standardized -stable (1,0,0)SD , times the forecast 

volatility ( ), 1/ 1/'p t t t tw Q wV � � , that is 
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, 1/ ( ), 1 1 , ( ), 1/( )t t p t p t tVaR z kT T DV� � � � .

Similarly, the Conditional Value at Risk at (1- )% confidence level is given by 

, 1/ ( ), 1 1 , ( ), 1/( )t t p t p t tCVaR z cT T DV� � � � .

Where � �1 , 1 ,/c E X X kT D T D� � d  is the CVaR of the corresponding standard -

stable � �0,0,1~ DSX . Even in this case, we can consider the aggregated process 

1

T

t T t s
s

Z z� �
 

 ¦ . If the high frequency process zt follows the above -stable sub-Gaussian 

EWMA model, then the conditional distribution of t TZ �  is a mixture of -stable sub-Gaussian 

vectors. In particular, the aggregated process is still an ISR-SARV(1) process if we consider the 

variance of the random variables � �2
, ,sgn ( )

p

j t j tz z A p . According to Lemma 1, the aggre-

gated process 
1

T

t T t s
s

Z z� �
 

 ¦  at time t is still -stable sub-Gaussian distributed only if the vec-

tors of returns t sz �  are i.i.d. -stable sub-Gaussian distributed. In this case, the dispersion matrix 

tTtQ /

~
�  of t TZ �  follows the time rule  

tttTt QTQ /1

/2

/

~
��  D

.

Therefore, if the aggregated process t TZ �  is the sum of i.i.d. -stable sub-Gaussian dis-

tributed vector of returns, we can predict the (1- )% VaR and CVaR over the period [t,t+T] with 

the time rule: 

� �1/
, / , 1/t T t t tVaR T VaR

D
T T� �| ,

� �1/
, / , 1/t T t t tCVaR T CVaR

D
T T� �| .

However, if we assume a Stable EWMA model for the returns, the previous aggregation 

time rules are only an approximation of future VaR and CVaR estimates and they can be applied 

only when T is not too big. Moreover, among the elliptical distributions, the -stable sub-Gaussian 

with �(0,2] (with =2 we obtain the Gaussian case) are the unique elliptical distributions such 

that the sum of i.i.d. elliptical random variables belongs to the same family of elliptical random 

variables.  

3.2. An -stable model with asymmetrically distributed returns 

As an alternative to the previous model, we can take into account the asymmetry of stable 

distributions generalizing the model proposed by Rachev et al. (2004). Under these assumptions 

the vector of centered return is conditional -stable distributed, i.e. 

1 1 1 1 1 1/ 1 1t t t t t t t t tz z b Y B GP� � � � � � � � �  � 6 ,  (20) 

where 1 1( )t tE zP � �  the factor � �0,,~
111 ��

�� tt yyt SY EVD  is an -stable asymmetric 

(i.e.
1

0
tYE �

z ) centered index return with dispersion and the skewness respectively equal to 

1tYV �
 and 

1tYE �
. Besides the residual random vector 1 1 1 1/ 1 1t t t t t t tz b Y B G� � � � � ��  6  is 

independent of factor 1tY �  and it is conditional -stable sub-Gaussian distributed, as the above 

Stable EWMA model with zero mean and dispersion matrix 
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2
1/ , 1/ 1/ 1/'t t ij t t t t t tQ V� � � �ª º  6 6¬ ¼ . Therefore, the centered return vector 

1 1, 1 , 1,..., 't t n tz z z� � �ª º ¬ ¼  is conditionally -stable distributed with conditional characteristic 

function: 
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.

Observe that this characteristic function is obtained by the sum of two independent multi-

variate -stable laws (see Samorodnitsky and Taqqu (1994) for further details). In particular, we 

assume that the centered returns , 1i tz �  are generated as follows 

1

1/

, 1 , 1 1 , 1/ , 1 , 1/ , 1 , 1ti t i t t ii t t i t ii t t i t Y i tz b Y b X
DDDV H V V

�� � � � � � � �
§ · �  �¨ ¸
© ¹

,

� �, 1 , ,, 1/ , / 1( ) (1 ) ( )
p pp p

t i t i t i t tii t t ii t tE z A p A p z b YV OV O�� �  � � � (21) 

, 1 , 1 , 1 , 1 1, , 1/

2
, , / 1 , , , ,

( ) ( )
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p
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t i t j t i t j t ti j i j t t
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  (22) 

2 2 2
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 ,  (23) 

where p�(0, ). For any i and t,
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SX and 

� �0,0,1~,, DH SGB titti   because the conditional distribution of residual vector 

1 1 1t t tz b Y� � ��  is -stable sub-Gaussian and it is independent of factor 1tY � . We require that the 

structure of dispersion matrix 
2

1/ , 1/t t ij t tQ V� �ª º ¬ ¼  of residual vectors is defined according to 

formulas (14) and (17). The parameter  is a "decay factor" that regulates the weighting of the past 

covariation parameters. The vector 
'

1, ,,...,t t n tb b bª º ¬ ¼  is estimated considering the OLS estima-

tor. Thus, if we assume that the vector > @'1,...,t nb b b b{   is constant over the time, then 
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, i=1,...,n. Götzenberger et al. (1999), Paulauskas and Rachev (2003) discuss 

the asymptotic properties of OLS estimators applied to stable models. However, Kurz-Kim et al. 

(2005) have shown that other estimators could present better asymptotic properties. The forecast 

scale parameter of i-th residual, , 1/ii t tV � is defined by: 

� � � �
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While the time t+1 stable covariation parameter between the i-th and the j-th residual is 

defined by 

2 2 2
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Under these assumptions, the forecasted (1- )% Value at Risk and Conditional Value at 

Risk of portfolio ( ), 1 , 1 1
1

'
n

p t i i t t
i

z w z w z� � �
 

  ¦  in the period [t,t+1], are given by the corre-

sponding percentile and CVaR, of the -stable distribution ( ), 1/ ( ), 1/( , ,0)p t t p t tSD V E� �  where 

1

1/
2
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is the volatility forecast and 
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is the skewness forecast. Moreover, in order to contemplate the evolution of the index Y, we as-

sume that the dispersion parameter 
tYV  follows the recursive formula 
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We refer again to Samorodnitsky and Taqqu (1994) for further details on properties of stable laws. 

Under these assumptions, the distribution of aggregated process 
1

T

t T t s
s

Z z� �
 

 ¦  conditionally 
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on the knowledge of dispersion and skewness is a mixture of -stable vectors. Therefore no time 

rules can be used to compute VaR and CVaR values of vector t TZ �  when the returns follow the 

above conditional autoregressive stable Paretian model. However, if we assume that the vectors 

/ 1t s t s t s t s t s t s t sz b Y B G� � � � � � � � � 6  of formula (20) are i.i.d. -stable distributed, then 

1

T

t T t s
s

Z z� �
 

 ¦  is also -stable distributed. In particular the dispersion and the skewness of a 

portfolio ( ), 'p t T t TZ w Z� �  are: 
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In addition, the aggregated vector of the i.i.d. -stable sub Gaussian distributed residuals 

/ 1t s t s t sH� � � �6 , where t s t s t sB GH � � �  (with null mean and dispersion matrix 

/ 1 1/t s t s t tQ Q� � � �  for any s=1, …, T) 
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1, 1, , ,
1 1 1

,...,
T T T
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is itself -stable sub Gaussian distributed with null mean and dispersion matrix 

> @2

/,/
~~

tTtijtTtQ ��  V  that follows the time rule tttTt QTQ /1

/2

/

~
��  D

.

Let us assume that the parameters , , ,
t tY Y tbE V  are constant over the time and suppose 

that the vector t TZ �  is the sum of i.i.d. -stable distributed vectors t sz �  of formula (20), then the 

forecasted (1- )% VaR and CVaR of portfolio ( ), 'p t T t TZ w Z� �  in the period [t,t+T] are 

given by the corresponding (1- ) percentile and CVaR, of the -stable distribution 

( ), / ( ), /( , ,0)p t T t p t T tSD V E� �  where  
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Therefore, the temporal rules  

� �1/
, / , 1/t T t t tVaR T VaR

D
T T� �| ,

� �1/
, / , 1/t T t t tCVaR T CVaR

D
T T� �| ,

hold when the vectors t sz �  are i.i.d. -stable distributed and follow the model (20). Thus, as for 

the previous cases, these time rules are not verified when we assume the previous autoregressive 

model and they could be considered only as an approximated result when T is not too big. On the 
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other hand, further studies on temporal aggregation of stable processes are beyond the scope of 

this paper, and they will be object of future discussions. 

4. Conclusions 

This paper proposes alternative models for the VaR and CVaR calculation. In the first 

part we describe several elliptical EWMA models with finite variance and discuss the applicability 

of some time rules. Then we introduce and discuss symmetric and asymmetric stable Paretian 

models to compute the percentiles and the expected losses. The symmetric stable model is an ellip-

tical EWMA model with infinite variance, while the asymmetric stable model is a three fund sepa-

ration conditional model with symmetric stable residuals. In particular, we prove simple temporal 

aggregation rules for each parametric stable model when the returns are i.i.d. stable distributed. 

However these rules are not valid for the conditional models even if in the classic Gaussian case 

they are still used by practitioners. On the other hand, all the parametric VaR and CVaR models 

and the respective time rules introduced here can be theoretically improved and empirically tested. 

This research is the starting point for further discussion, studies, and comparisons on temporal 

aggregation rules and subject for future research. 
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