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Stochastic Programming Methods in Asset-Liability Management 

Michael Grebeck, Svetlozar Rachev 

Abstract

This paper reviews some of the stochastic programming (SP) frameworks that are useful 
in applications to asset-liability management (ALM). Two such frameworks include recourse 
models and SP with decision rules. Recent advances also provide a representation for the Condi-
tional Value-at-Risk risk measure that can be easily optimized in SP. Uncertainty in ALM stochas-
tic programs is represented through discrete scenarios that are often generated through time-series 
methods. Sophisticated methods, such as those incorporating stable distributions, are needed to 
capture typical characteristics of financial data. 

Key words: Stochastic programming, stable distributions, risk, uncertainty, time-series 
analysis.

1. Introduction 

Asset-liability management attempts to find the optimal investment strategy under uncer-
tainty in both the asset and liability streams. In the past, the two sides of the balance sheet have 
usually been separated, but simultaneous consideration of assets and liability can be very advanta-
geous when they have common risk factors. Allocating assets such that they are highly correlated 
with the liabilities can increase returns and reduce risk. 

Developed in the late 1970’s, immunization is an earlier ALM method that is still very 
popular today. Bond immunization attempts to match the interest rate sensitivity of a bond portfo-
lio with the interest rate sensitivity of a liability stream. The resulting allocation only hedges 
against a small shift in the term structure of interest rates. This technique fails to incorporate the 
stochastic nature of interest rates and is a single stage model with no transaction costs. Therefore, 
immunization is inadequate for the multistage and stochastic problems of ALM. This paper fo-
cuses on the more recent SP ALM models that attempt to capture the dynamic and uncertain char-
acteristics of financial decision-making. 

Stochastic programming is becoming more popular in finance as computing power in-
creases. While multistage stochastic programs can adequately model dynamic and stochastic finan-
cial problems, realistic ALM models could rarely be solved until recently, and still some simplifica-
tions are usually needed to implement the problems. But now there have been enough advances that 
stochastic programming can obtain superior results to simple diversification or immunization. 

The tradeoff between risk and reward is an important consideration in ALM. Two impor-
tant measures of risk that depend on the tail of a loss distribution are the Value-at-Risk (VaR) and 
the Conditional Value-at-Risk (CVaR). Unlike VaR, recent results have shown that CVaR can be 
easily optimized in a convex program. 

2. Scenario Generation 

The stochastic programming formulations used in ALM rely on uncertainty approximated 
by a discrete set of scenarios organized in a tree structure. These scenarios are often generated by 
the discretization or simulation of a time-series model. To trust the solution of a stochastic pro-
gram, these time-series models should include realistic characteristics of financial data such as 
heavy tails, high peaks, skewness, long-range dependence, and stochastic volatility. These charac-
teristics can be captured by time-series methods incorporating stable distributions. 

2.1. Stable Distributions 

By the Central Limit Theorem, normalized sums of i.i.d. random variables with finite 
variance converge weakly to the normal random variable, and with infinite variance, and sums 
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converge weakly to a stable random variable1. This gives a theoretical basis for the use of stable 
distributions when heavy tails are present. 

A random variable x has a stable distribution if for any 0a  and 0b  there exists 
0c  and Rd such that:  

dcxbxax
d

21 , (1) 

where 1x  and 2x  are independent copies of x. Stable distributions are described by four 

parameters, , , , and , and are denoted by ).,,(S  When the index of stability, 

]2,0( , is small, the distribution has a high peak and heavy tails. Gaussian distributions are a 

subset of the class of all stable distributions and are obtained when 2 . The skewness parame-

ter, , determines if the distribution is skewed to the left )0(  or the right )0( . The scale 

parameter, , generalizes the notion of standard deviation, and the variation, , generalizes the 
notion of variance. 

If )2,0( , the heavy tails can be described by: 
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for constants 1k  and 2k  that depend on  and . In this case, the p-th absolute moment of 

x,
0

dxPxE
pp

, is finite if and only if p . If 2 , all absolute moments 

are finite. Models of financial data typically assume ]2,1( , so it is possible to discuss ex-

pected returns. 

In general, there is no closed form density or distribution function for stable random vari-
ables. However, the characteristic function is known and can be used to calculate densities through 
fast Fourier transform methods. 

2.2. Financial Time-Series 

The traditional autoregressive moving average (ARMA) model is often adequate for 
short-term prediction of stationary time-series. However, the conditional homoscedasticity prop-
erty of ARMA states that the conditional variance is constant and independent of past observa-
tions. Therefore, ARMA cannot model volatility clusters. 

ARMA is also inadequate for capturing long-range dependence (LRD). In the case of in-
novations with finite variance, LRD of data can be described through the decay of the autocorrela-

tion functions ),,(Corr 0 nn xx ,...1,0n . A common definition of LRD is: 

ncn h

n as~ , (3) 

for some 0c  and 10 h . It is known that ARMA processes have an exponential 
decay of the correlation and hence cannot model LRD. A fractional integrated ARMA can model 
this dependence. 

The generalized autoregressive conditional heteroscedastic (GARCH) model is used to 
capture the conditional heteroscedasticity, or clustered volatilities, in time-series with constant 

unconditional variance. The following is the GARCH model for t :

                                                          
1 In the special case of random variables with infinite variance and =2, the sum converges weakly to a random variable 
that is not only stable, but also normal. 
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where the process for the conditional variance 2
tc  is: 
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with all i  and j  nonnegative constants. The effects of the squared innovations decay 

exponentially in a GARCH process. Similar to ARMA processes, a fractional integrated GARCH 

(FIGARCH) can model LRD. In FIGARCH, the past shocks to the conditional variance 2
tc  decay 

at a slower hyperbolic rate. 
In ARMA-GARCH, the innovations of ARMA follow a GARCH process. In addition to 

volatility clusters, ARMA-GARCH provides unconditional heavy-tailed distributions with high 
peaks. However, the GARCH filtered residuals still possess heavy tails, so the next logical step is 

to include non-normal innovations. Three of the suggested non-normal distributions for tu  are the 

generalized error distribution, Student’s t-distribution, and stable distribution. 
Stable GARCH has advantages over other fat-tailed distributions. The first is the theoreti-

cal properties mentioned earlier. The second is that the stable distribution can also model condi-

tional skewness. The asymmetric stable GARCH process for t  is: 
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,  (6) 

where the process for tc  follows: 
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with all i  and j  nonnegative constants. The usual assumption is that 21 , but 

this is not very restrictive since most financial time-series have a finite mean. The stable GARCH 
equations are often stated with 1 . Since 1 , this assumption guarantees the first moments 

of tc  are finite. This would not be the case if  as the first moments of tc  would be infinite 

for any .2  A full treatment on GARCH with stable distributions can be found in Rachev and 
Mittnik (2000). 

3. Recourse Models 

Stochastic programming with recourse is a general formulation in which many ALM ap-
plications fit. 

3.1. Two-Stage Recourse 

The two-stage recourse problem allows a recourse decision made after uncertainty is real-

ized. The first stage is a vector of initial decisions 1R1
n

x  made when there is a known distribu-

tion of future uncertainty. The second stage decisions 2R2
n

x  adapt after the uncertainty is real-

ized. For instance, consider an asset allocation problem: The first stage is the initial portfolio, the 
uncertainty is in the stock prices, and the recourse stage is portfolio adjustments. This two-stage 
recourse problem finds the best first stage allocations for the given distribution of future stock 
movements. 
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For a given initial stage decision vector 1x , the best recourse decision is found through 

the second stage problem: 

    

,R
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where ),( 22 xq  is the cost of the decision 2x  for the given realization of the second 

stage uncertainty . With the optimal objective value of the second stage problem denoted by 

),,( 1xQ  the full two-stage recourse problem is: 

.
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Cash flow balancing between stages and an initial wealth restriction are typical examples 
of constraints found in (8) and (9). 

Many applications of recourse models in ALM are linear programs. In this case, functions 
are linear in the decision variables: 

    
111 )( xcxq T ,

222 )(),( xqxq T ,  (10) 

where 1R n
c , and for a given , .R)( 2n

q

After scenarios have been generated, the recourse problem is converted into a determinis-
tic equivalent form. Assume there are S paths in the scenario tree and each scenario s has probabil-

ity sp  for .,,1 Ss  The two-stage recourse model is then: 
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 (11)  

The scenario s corresponds to a realization of uncertainty  that determines ),(2q ,

)(2B , )(2A , and )(2b . These are denoted by )(2
sq , sB2 , sA2 , and sb2 , respectively. 

3.2. Multistage Recourse 

The stage in a recourse problem does not necessarily correspond to a time period. In a 
two-stage problem, the second stage may unrealistically contain many time periods. For instance, 
consider the asset allocation problem where the initial portfolio is constructed at time zero, and the 
second stage corresponds to time periods 1 through . If the portfolio is adjusted at time ' ,

'0 , the re-allocation is made with knowledge of future uncertainty that should not yet be 
realized. A multistage recourse program can provide a more realistic model, but it is more complex 

and can be difficult to solve. As in the two-stage problem, the initial decision vector 1x  is deter-

mined before the first realization of uncertainty 1 , and the second stage decisions 2x  are then 

made based on 1x  and 1 . In the T-stage problem, this process continues for the uncertainties t ,

1,,1 Tt , and the decision vectors tx , Tt ,,1 .
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 The T-stage recourse program seeks to find the optimal decisions 
T

ttx 1  where 

.R tn

tx  Let the uncertainty up to stage t, for 1,,1 Tt , be denoted by 
t

jj

t

1
,

where each t  is the realized uncertainty between stage j and 1j . The following is a common 

form of the multistage model: 
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Again, linear programs are often considered in ALM where the costs tq  are linear in the 

decisions tx . Another very common addition to the above program is to set various upper and 

lower bounds on the decision vectors tx .

The split-variable formulation is a deterministic equivalent form that lends itself to de-
composition and parallel implementation. Allowing all decisions to be scenario dependent creates 
S independent subproblems. Non-anticipatory constraints must be explicitly considered in this 
formulation: For any two scenarios s and 's  with a common path up to and including stage t, the 

constraints 's

j

s

j xx , for tj ,,1 , must be enforced. 

Many multistage applications in ALM can be posed as stochastic generalized networks. 
This means that each scenario subproblem of the split-variable formulation has a generalized net-
work structure. Parallel implementations of highly efficient network algorithms can provide sub-
stantial computational advantages; however, some aspects of a desired application may destroy the 
network structure. 

Another deterministic formulation of the multistage program is the arborescent form that 
implicitly includes the non-anticipatory constraints, but this form will not preserve any network 
structure present. 

Additional recourses including solution techniques for two-stage and multistage linear 
stochastic programs with recourse are found in Dupa ová et al. (2002), Birge and Louveaux 
(1997), and Censor and Zenios (1997). 

3.3. Successful Applications 

The model in Kusy and Ziemba (1986) is an earlier application of a two-stage stochastic 
linear program with simple recourse for the Vancouver City Savings Credit Union. The main fea-
tures include: changing yield spreads over time, synchronization of cash flows by matching ma-
turities of assets with expected cash outflows, simultaneous consideration of assets and liabilities 
to satisfy accounting principles and match liquidities, various transaction costs, uncertain cash 
flows arising from uncertainty in withdrawal claims and deposits, uncertain interest rates, and legal 
and policy constraints. While the model contains many multi-period aspects, it is not completely 
dynamic. Also, scenarios are independent over time and are limited to high, average, and low re-
turns. However, even with many simplifications, the model generated superior policies. 

Another successful application is the Russell-Yasuda Kasai model for a Japanese insur-
ance company. A six-stage recourse model incorporates complex liabilities and regulations. A 
general description of this model is found in Carino et al. (1999). 

4. Stochastic Programming with Decision Rules 

Decision rules determine asset allocations and other money management decisions in 
each time period and do not change over the time horizon. One popular decision rule is referred to 
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as fixed-mixed: The wealth invested in each asset class is constant. A typical fixed-mixed rule is 
60% invested in stocks and 40% invested in bonds. In the beginning of each time period, the 
stocks and bonds are bought or sold to keep the desired ratio. 

Using decision rules significantly reduces the number of decision variable as compared to 
the previous multistage SP formulations. Optimizing over decision rules is less computationally 
intense than the large-scale linear programs found in these other SP methods; however, most deci-
sion rules result in non-convex optimization problems. If a nonlinear programming algorithm is 
used, only a local solution is found, so this algorithm would need to be re-started at many points. 
Alternatively, a global search algorithm may be used. In either case, there is no guarantee that 
these methods can find the global solution. 

In addition to being easier to implement, the quality of the optimal decision rule is gener-
ally good. Any decision rule can be tested with out-of-sample scenarios, and confidence limits on 
risk measures can be constructed. 

The presence of heavy tails in multistage asset allocation with fixed-mixed decision rules 
is examined in Tokat et al. (2003). The decision rule determines the wealth invested in a Treasury 
bill and the S&P500. The returns of the S&P500 are generated under a normal assumption and 
under a stable assumption. When the level of risk aversion is high or low, the computational re-
sults illustrate that the allocations are close under both assumptions. With moderate risk aversion, 
the stable assumption results in less invested in the risky S&P500 and a higher certainty equivalent 
final wealth. 

5. Conditional Value-at-Risk 

5.1. Definitions 

Value-at-Risk (VaR) is a frequently used measure of risk for financial institutions and 
regulators. For a given confidence level , VaR is the maximum loss that is exceeded no more 
than )1( % of the time. Its ease of understanding helps to make VaR a popular risk measure. 

The following notations and definitions of VaR and CVaR resemble mostly those of 

Rockafellar and Uryasev (2002). Let nx R  be a vector of decisions and )(xL  be a random 

variable representing a loss for each x. For example, )(xL  may be linear in x:

nnYxYxxL 11)( . (13) 

Here, iY  could be a random variable representing a loss (or negative return) or an indi-

vidual asset. If the distribution function of )(xL  is: 

)(),( xLPxL
, (14) 

then for a given decision x, the VaR at confidence level  is given by: 

     ),(|inf)(VaR xx L
. (15) 

Another important tail measure of risk is the Conditional Value-at-Risk (CVaR). While it 
is not widely used in finance, it has properties that make it a very logical alternative to VaR. De-

fine a random variable )(xT  on the -tail of the loss )(xL  through the distribution function: 

    
)(VaR

1

),(
)(VaR0

),(
x

x

x

x
LT

 (16) 

For a given decision x, the CVaR at confidence level  is the mean of the tail random 

variable )(xT  with distribution function (16): 
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)()(CVaR xTEx . (17) 

If there is no discontinuity in the distribution function of )(xL  at )(VaR x , CVaR is 

just the conditional expectation beyond VaR. 
To help define a sensible risk measure, Artzner et al. (1999) introduce properties that are 

required of a coherent risk measure; however, VaR does not satisfy these properties in general. As 
is well known, VaR is not sub-additive: Examples have been constructed where the VaR of the 
sum of two portfolios is greater than the sum of individual VaRs. Lack of subadditivity is very 
undesirable because diversification is not promoted. 

5.2. Equivalent CVaR Representation 

A lack of convexity of VaR contributes to numerical difficulties in optimization. VaR is 
easy to work with when normality of distributions is assumed, but financial data is typically 
heavy-tailed. In addition, VaR is non-convex and non-smooth in the case of discrete distributions 
of scenario trees. On the other hand, CVaR has a representation that is practical in minimization 
problems regardless of distributional assumptions. However, minimization of CVaR may produce 
very different solutions than minimization of VaR: VaR minimization may stretch the tail of the 
distribution beyond VaR resulting in a poor CVaR value. 

To begin, define the function: 

)(
1

1
),( xLEx , (18) 

then CVaR is expressed as a minimization through the following result: ),(x  is finite 

and continuous with: 

),(min)(CVaR
R

xx . (19) 

As a corollary, it can be shown that if )(xL  is convex in x, then )(CVaR x  is convex 

in x and ),(x  is jointly convex in ),(x . In addition, if a constraint set X is convex, the next 

result produces a convex minimization problem in ),(x : Minimizing )(CVaR x  with respect 

to Xx  is equivalent to minimizing ),(x  with respect to R),( Xx , i.e.

),(min)(CVaRmin
R),(

xx
XxXx

. (20) 

The proofs of these results are found in Rockafellar and Uryasev (2002). There are very 
similar results for CVaR constraints in optimization problems. 

When )(xL  has a discrete distribution arising from, for example, a scenario tree or sam-

pling, equation (18) becomes: 

S

s

ss xLpx
1

~

)(
1

1
),( , (21) 

where the random variable )(xL  takes the value )(xLs  with probability sp  for 

Ss ,,1 . Furthermore, if )(xL  is linear in x, then 
~

 is convex and piecewise linear. 

5.3. CVaR Risk-Reward Optimization 

To apply the above results to the single period asset allocation problem, define the con-
straint set: 
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njxxxX j

n

j

j

n ,,1,0,1R
1

, (22) 

where Xx  represents positions in n assets. The random return on these assets at the 

end of the time period is represented by T

nrrr ),,( 1 , and the total negative return of the port-

folio is then given by: 

rxxL T)( . (23) 

If the mean of r is given by the vector , the risk-reward problem is: 

0s.t.)(CVaRmin T

Xx
xx , (24) 

where 0  is the required portfolio return. If the uncertainty in the return is given through 

the set of scenarios Srr ,,1 , the equivalent formulation is: 
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and by introducing auxiliary variables sy , Ss ,,1 , a linear program results: 
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This optimization program is used to compare hedging strategies for international asset 
allocation in Topaloglou et al. (2002). 

6. Conclusions and Current Research 

Stochastic programming captures the stochastic and dynamic nature of ALM problems 
more realistically than the current standard methods of immunization. However, due to the compu-
tational complexity of SP models, it is only until recently that SP has gained applicability in indus-
try. Still, some simplifications such as decision rules are often needed in implementation. 

Stochastic programming ALM relies on uncertainty modeled through a discrete set of 
scenarios. Although there has been some work studying the effects of stable distributions in SP, 
ALM applications and case studies have been fairly limited in incorporating the various character-
istics of financial time-series. This is one area of current research being pursued by the authors. 

It is known that GARCH and other time-series methods create scenarios that severely 
over forecast the unconditional volatility at distant time periods. This creates a problem because 
ALM models should include scenarios far into the future. At longer horizons, it appears more ap-
propriate to generate scenarios that match the future volatilities implied by the market data. This is 
a second area of ongoing research: Construct scenario trees that use historical time-series, such as 
stable GARCH, for early time periods, but generate scenarios for later time periods that agree with 
the market data. 

CVaR has the desirable property of coherence that is lacking in other common risk meas-
ures such as VaR and variance. In addition, recent advances have shown that CVaR has an equiva-
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lent representation that lends itself to convex optimization in stochastic programming. A third area 
of current research is to analyze the effects of the distributional assumptions on the optimal alloca-
tions of ALM models with CVaR constraints. CVaR is closely related to the expected loss in the 
tail of the distribution, so the stable assumption will provide a more accurate risk measurement 
than the normal assumption. Therefore, the stable assumption should improve the optimal alloca-
tions.
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