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Alessia Naccarato (Italy), Andrea Pierini (Italy) 

Element-by-element estimation of a volatility matrix. An Italian 

portfolio simulation 

Abstract 

The authors propose a procedure for a mean-variance Markovitz type portfolio selection based on estimates of average 

returns on shares and volatility of share prices. In other words, the authors address the problem of estimating average 

returns and the associated risk on the basis of the prices of a certain number of shares over time. The estimate is then 

used to identify the assets offering the best performance and hence constituting the best investments. The use of VAR 

(1) models is common practice in the literature; here instead we suggest the CVAR models, which take into account 

cointegration between the series employed and the market trend as measured by means of the Equity Italy Index. The 

use of BEKK is then applied to the residuals obtained before in a multiple bi-dimensional way so that the 

computational is made feasible while retaining a complex structure representation. The model put forward is applied to 

a series of data regarding the prices of 150 best capitalized shares traded on the Italian stock market (BIT) between 1 

January 1975 and 31 August 2011; it takes into account the intrinsic value of the stocks to select the best performing 

ones. Eventually the authors find the efficient portfolio by minimizing the risk. The proposed methodology allows for 

the inclusion of more information and has very appealing strengths when compared to established models. 

Keywords: Markowitz portfolio, cointegrated vector autoregressive models, multivariate volatility models. 

JEL Classification: C580. 
 

Introduction  

The selection of a stock portfolio is broadly discussed 

in the literature, generally with reference to 

heteroskedastic regression models (Bollerslev et al., 

1994). The model used in the case of multiple time 

series is of the vector autoregressive (VAR) type and 

rests on the predictability of the average return on 

shares (Brown and Reily, 2008; Hamilton, 1994). As 

shown by the Markowitz theory (Markowitz, 1952), 

the selection of a share portfolio involves estimating 

not only risk but also average return. 

As far as the average return is concerned, the 

application of multivariate time series to model 

financial returns has been debated in the literature 

with modellers taking mainly two different 

approaches: the first one (Fama, 1965) has a priori 

belief that returns should be uncorrelated; the 

second approach (Campbell, 2003) allows for the 

returns to be correlated. Following the second 

approach and on the basis of empirical evidence 

provided by statistical tests (see (6) and par. 4), we 

believe sensible to consider the possibility that 

financial returns can be integrated and cointegrated 

in the short term, while stationary in the long term. 

We hence propose a modelling approach that allows 

for this eventuality. 

In particular this paper suggests the combined use of 

cointegrated vector autoregressive models (CVAR) 

and, as far as the risk is concerned, Baba-Engle-

Kraft-Kroner models (BEKK) (Engle and Kroner, 

1995) for the selection of a stock portfolio. 

                                                      
 Alessia Naccarato, Andrea Pierini, 2014. 

The paper has been presented at the conference Maf2014 

(maf2014@unisa.it). 

In other words, it addresses the problem of 
estimating average returns and the associated risk on 
the basis of the prices of a certain number of shares 
over time. The possibility of combining the two 
different models, in order to estimate the magnitudes 
required for portfolio selection, is supported by 
asymptotic theory. It can in fact be shown (Lutkepohl, 
2007, p. 571) that estimates of parameters obtained by 
combining the two models (applying the CVAR 
model first, then using the residuals thus obtained to 
estimate the diagonal elements of the volatility matrix 
by means of the BEKK model) coincide with those 
that would be obtained if the log-likelihood function to 
be maximized contained all the parameters 
simultaneously: both those of the CVAR and of the 
BEKK models. These estimates are then used to 
identify the assets offering the best performance and 
hence constituting the best investments. 

While Campbell et al. (2003) propose the use of a 
VAR (1) model, we suggest here using vector error 
correction (VEC) models, as they take into account 
the cointegration between the series employed and 
the market trend. Moreover, while Bollerslev, Engle 
and Wooldridge (1988) employ diagonal 
vectorization (DVEC) models to estimate share 
volatility, the use of a BEKK model, as proposed 
here, allows to extend the estimation procedure based 
on DVECs to take also into account the correlation 
between the volatility of the series and the volatility 
of the market trend. We present application to the 
Italian stock market (BIT): specifically the monthly 
figures for the top 150 shares in terms of capitalization, 
from 1 January 1975 to 31 August 2011. 

The estimation procedure proposed for portfolio 
selection involves two steps. In the first step, a two-
dimensional CVAR model is developed for all of 
the 150 shares considered in order of capitalization 
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to obtain an estimate of the average stock market 
return. A BEKK model is then applied to the series 
of residuals in order to estimate the volatility of the 
series. The BEKK model appears particularly suitable 
because it does not entail the condition of normality 
for the innovations of the model (Hamilton, 1994). 
The second step regards the selection of shares for 
inclusion in the portfolio. Only those identified as 
presenting positive average returns during the first 
phase are considered eligible. For the purpose of 
selecting the most suitable of these, a new 
endogenous variable is constructed as the product of 
two further elements, namely the price-to-earnings 
ratio (P/E) and earnings per share (EPS). This 
variable indicates the intrinsic value of the share. 

The variable P/E  EPS (Nicholson, 1960) is estimated 
for each industrial sector and for each share. The 
CVAR-BEKK model is applied once again to this 
new series in order to estimate the intrinsic value of 
the shares and the best are selected for inclusion in the 
portfolio on the basis of the difference between this 
intrinsic value and the price estimated in the first phase 
(Brown and Reily, 2008). For every fixed number of 
assets included in the portfolio (n), a quadratic 
programing model is used to determine which of the 
different combinations of quantities of each share 
involves the least risk. In other words, as the quantity 
to be bought varies for each of the n shares chosen, 
different portfolios are identified. Different minimum-
risk portfolios are thus obtained for variation of the 
dimension n. The portfolio to be invested in will 
ultimately be the one that involves the least risk out 
of all the minima identified. 

1. The cointegrated vector autoregressive 
models 

This paragraph provides a concise outline of the 
phases involved in the selection of shares to be 
included in the portfolio as well as their respective 
quantity. The starting point is the K = 150 series, 
regarding the average returns Rk,t on the shares, and 
the average return of the market RM,t where t = tk,…, 
T with = 1,…, K. It should be noted that the length 
of the series considered is not homogeneous because 
not all of the joint-stock companies are quoted from 
the same point in time. This aspect involves further 
complications in the estimation procedure. 

For each series, the model CVAR(p) is defined for 

the random vector:  

1, 2, , ,[ , ] = [ , ] ,
t t t k t M t

y y y R R

 
1 1 ,t t t p t p ty A y ... A y u

                          

(1) 

with 0 1 ,
t

t  ( 1,..., ),i i p  a matrix of 

unknown coefficients and 1, 2,[ , ]t t tu u u  a vector of 

errors such that (0, )
t u

u N . It can be rewritten as 

1 1 1 1 1 ,
t t t t p t p t

y y y ... y u        (2) 

where i =  (Ai+1 +...+ Ap),                                         (3) 

and  =  (I – A1 ...  Ap).                                         (4) 

If  is singular,

 

1 1,1 1,[ ,..., ]
T

y y y  and 2 2,1 1,[ ,..., ]Ty y y  

are cointegrated (Johansen, 1995; Lutkepohl, 2007). 

In specifying the CVAR model, the lag order and 

the cointegration rank have to be determined. We 

start by determining a suitable lag length because 

this task does not require knowledge of the 

cointegration rank. The AIC criterion is used to 

estimate the lag p̂, with reference to model (1): 

( ) =

= min ln ( ) , 0,..., ,

m

T
m u max

p̂ arg min C m

mc
det m m p

T

 (5) 

where ( )
u

m  is the maximum likelihood estimate 

(MLE) of ( )
u

m  for a VAR(m) of type (1) with a 

sample of breadth T – tk + m and m values of 

initialization, with cT = 8, pmax = 10. Note that, while 

we have considered a VAR(p), the criterion is also 

applicable for choosing the number of lagged 

differences in a VEC model (2) because p  1 

lagged differences in a VEC correspond to a VAR 

order p (Lutkepohl, 2007). 

In practice it is common to use statistical tests in 

specifying the cointegration rank. 

In this framework to ascertain the presence of 

cointegration in model (2), the likelihood ratio test 

(LR) is used: 

0

2

0

1

( )= log(1 ),
i

j r

LR r – T      (6) 

where r0 = rank( ) = 0,1 and j are the eigenvalues 

of the matrix: 

1 2 1 2 1 2

11 10 00 01 11 ,/ / /
S S S S S  

with 00

1

1
,

T

t t

t p

ˆ ˆS u u
T p

 

01

1

1
,

T

t t

t p

ˆ ˆS u v
T p

 

11

1

1 T

t t

t p

ˆ ˆS v v .
T p

 

The quantities 
t t

ˆ ˆu v  are the residuals of the regressions 

of yt and yt-1 estimated by maximum likelihood 

(Johansen, 1995). However, the asymptotic 

distribution of the LR statistic is nonstandard, in 
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particular it is not a chi-squared distribution. In fact the 

limiting distribution is a functional of a standard 

Wiener process. Quantiles of the asymptotic 

distribution, thus, critical values for the LR test can be 

generated considering multivariate random walks 

(Johansen et al., 1990). 

Assessment of the presence of cointegration 
between the series by means of the LR test is 
followed by estimation of the parameters of the 
model. The result of the LR test is considered in 
deciding whether to adopt the model in form (1) or 
(2). In particular, if the test shows that the rank of 
matrix  is equal to 0 (hypothesis of stationarity of 

yt), then  = 0 and the method of maximum 
likelihood is applied directly to (2) in order to 

estimate the parameters 0, 1 and 1,..., p-1. If 
instead there is evidence that the rank of  is equal 
to 1 (hypothesis of cointegration of y1 and y2), then 

 = . In this case, it is necessary to estimate 

model (2) in two stages. First, an MLE of  is 
obtained by concentrating the log-likelihood with 

respect to . Second, this estimate is inserted into 
(2) in order to obtain the MLE of the other 
parameters (Johansen, 1995). If rank ( ) = 2, the 
method of maximum likelihood is applied directly 
to (1) in order to obtain estimates of the parameters 

0, 1 and A1,…, Ap. A portmanteau test is used to 
ascertain the presence of correlation of residuals, the 
generalized Lomnicki-Jarque-Bera test for the 
normality of residuals, and the ARCH test to 
investigate heteroskedasticity. In order to forecast it 
is convenient, in this framework, to use the levels 
VAR representation. Therefore we consider the 
model (1) with integrated and possibly cointegrated 
variables replacing the coefficients with their 
estimates as calculated before: 

1 1 11 T T p T pT T
ˆ ˆˆ ˆy A y ... A y .     (7) 

2. The BEKK model for heteroskedasticity 

In the event of the Lomnicki-Jarque-Bera test 
revealing the presence of heteroskedasticity, the 
BEKK (1,1) model is used to estimate the 
conditional variance-covariance matrix 

,1
( ) ( ), , 1,..., ,t i jt t

cov u past t i j n    (8) 

which has the following structure: 

11, 12, 0,11 0,11 0,12

1

21, 22, 0,21 0,22 0,22

2

1,11 1,12 1, 1 1, 1 2, 1 1,11 1,12

2 2
1,21 1,22 1,21 1,222, 1 1, 1 2, 1

2,11 2

0

0

t t

t t

t t

t t t

t t t

c c c

c c c

c c u u u c c

c c c cu u u

c c
2

,12 11, 1 12, 1 2,11 2,12

2
2,21 2,22 2,21 2,2221, 1 22, 1

t t

t t

c c
.

c c c c

  (9)

 

Equation (9) is equivalent to a multivariate (MV) 
GARCH(1,1) model. This allows (Tsay, 2010) an 
effective maximum likelihood estimation even when 
return are highly non Normal. In such a case the 
parameters of equation (9) are estimated by quasi 
maximum likelihood. The estimate of parameters 
ck,i,j at time t = T (Lutkephol, 2010, p. 569) is then 
obtained by maximizing the log-likelihood function: 

1 1

1

ln
ln(2 )

2

t t

t tt t
u u .    (10) 

Once the parameters have been estimated, the 
generalized portmanteau test (Hosking, 1980) is 
applied to ascertain that the model BEKK(1,1) has 
effectively eliminated the ARCH effects in the 
residuals of the CVAR model: 

2 1 1 1 2

0 0

1

( ) ( ) ,
m

m k k m p

k

ˆ ˆˆ ˆQ n n k g G G g       (11) 

where p is the CVAR order, n = T – tmax, tmax = max{ti, tj}, 

( ),
k k

ˆĝ vec G  ,
k k

ˆ ˆG L C L  1

1

,
m

k t t k

t k

ˆ ˆ ˆG n u u  

1

1

,
m

k t t k

t k

ˆ ˆ ˆG n u u

 
0,ˆL L C  m = 1,…, 10. 

We define  = vec(C0, C1, C2) the array of unknown 

parameters, the estimator  of the array d has an 

asymptotic normal distribution with variance-

covariance matrix given by the inverse of the 

asymptotic information matrix (Comte and 

Lieberman, 2001). 

It follows that  is the asymptomatically most effi-

cient estimator under the normality hypothesis of ut. 

Even if the conditional distribution of ut underlying 
an ARCH(q) model is normal, the unconditional 
distribution generated will generally be non-normal. 
In particular, it is leptokurtic, that is, it has more 
mass around zero and in the tails than the normal 
distribution and, hence, it can produce occasional 
outliers. 

Moreover the asymptotic information matrix of the 
VAR parameters and the GARCH parameters is 
block diagonal so that the estimators of the VAR 
coefficients are asymptotically independent of the 
GARCH parameter estimators (Lutkephol, 2010,  
p. 571). This result suggests that the two step 
estimation procedure here applied, in which the 
VAR coefficients are estimated and then a GARCH 
model is fitted to the residuals, is asymptotically 
equivalent to the overall estimator. 

The procedure, concerning the construction of the 
CVAR(p) and BEKK(1,1) models, is repeated for 
each pair i, j of series defined by the random vector 

1, 2, , ,[ , ] = [ , ]
t t t k t M t

y y y R R .
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The estimates obtained in precedent phase are used 

to select the shares for which positive average 

returns are predicted. For the shares thus selected 

and for each industrial sector (IS), the model 

CVAR(p)-BEKK(1,1) is estimated for the random 

vector y: 

1, 2, ,

( ),

[ , ] =[( / ) ( ) ,( / )

( ) ] ,

t t t h t

IS h t

y y y P E EPS P E

EPS
 

where h = 1,…, H is the index that identifies only 

the series with positive returns selected out of the 

initial 150. On the basis of the (P/E)·(EPS)h,T+1 and 

Rh,T+1 forecasts obtained in phase two, the shares are 

listed for each industrial sector in decreasing order 

with respect to the values of the difference between 

intrinsic value and expected price. 

The first n = 10 shares are thus selected to make up 

the portfolio. The choice of n = 10 is made on the 

basis of the assertion by Evans and Archer (1968) 

that this quantity is sufficient for diversification of 

portfolio choices. The dimension n of the portfolio 

is increased by one unit at a time until nmax, where 

nmax is the maximum number of shares with positive 

predicted returns. 

In order to determine the quantities to be bought of 

each of the n shares selected, it is necessary to solve 

the Markowitz problem (Markowitz, 1952) by 

estimating the matrix of share volatilities. To this 

end, let 
t

V̂  be the estimator of the n × n volatility 

matrix Vt for = T + 1, the elements of which are: 

, , ,( ) = ( , ), ,  =1,..., . i j i t j tv t cov R R past i j n  

The elements of Vt for t = T + 1 are given by: 

( , )

11,

, ( , )

12,

if
( ) = ,

if

i M

t

i j i j

t

ˆ i j
v̂ t

ˆ i j
   (12) 

where 
( , )

11,

i M

t
ˆ  is the corresponding estimated element 

of the matrix t t-1 defined in equation (9) for the 

random vector 1, 2, , ,[ , ] =[ , ]t t t k t M ty y y R R , whereas 
( , )

12,

i j

t
ˆ  is the corresponding estimated element of the 

matrix t t-1 defined in equation (9) for the random 

vector 1, 2, , ,[ , ] =[ , ]t t t k t M ty y y R R . 

On the basis of (12), a quadratic Markowitz type 

problem, called global minimum variance portfolio, 

for the future time T + 1 can be obtained with the 

approximation given by the dual method (Goldfarb, 

1983; Higham, 2002) as: 

1 1 , 1{ = },
T T p T

ˆ ˆmin V R  

where 1 1, 1 ,[ ,..., ]T T K T+1
ˆ ˆ ˆR R R  and , 1p T

R . 

We omit the constraint of a fixed value for the 

expected return to eliminate the sensitiveness of 

allocation optimization to errors in predicted returns 

(Hlouskova et al., 2002). In cases where the matrix 

1T
V̂  is positive neither in (12) nor in (13), we 

approximate it with the closest matrix, in the sense 

of Frobenius, possessing the same diagonal given by 

the elements estimated with the BEKK model. 

3. Application to the Italian stock market 

As an illustration, the methodology proposed in the 

previous paragraphs is now applied to the monthly 

values of the 150 BIT shares with the highest level 

of capitalization. 

The market trend considered for this application is 

the Thomson Reuters Datastream Global Equity 

Italy Index (Datastream 2008). On the basis of the 

minimum AIC, the optimal lag selected for the 

different shares is between 2 and 9 months. Figure 1 

(see Appendix) shows the empirical distribution of 

the lag. In particular, while the optimal lag is 2 

months for 77% of the entire set of 150 shares, it is 

at most 2 months for 88% of the shares in the 

portfolio and more than 2 months for the remaining 

12%. This means that 2 months of observations are 

sufficient to predict the average returns on the vast 

majority of the shares considered, instead of a 

random walk model. It was therefore decided to set 

lag 9 as the maximum lag. 

Such a high value is probably unrealistic and 
possibly reflects a multiple testing effect beyond the 
AIC penalization for extra parameters. A heavier 
penalization could be adopted. 

The results of the LR test for all the shares 

considered, show an order of cointegration equal to 

2 for 91% of the 150 shares, 1 for 7% and 0 for the 

remaining the VEC model we used is estimable 

(Johansen, 1995) and stationary. Under these 

conditions, the alternative VAR model is neither 

directly estimable nor stationary. 

The coefficients of the model estimated in both 

steps of the procedure are significant for almost all 

of the series considered. The p value of the F 

statistic to test the joint significance of the 

coefficients is in fact below 0.10 in 83% of cases 

and the model is therefore significant for nearly all 

of the series. Figures 2, 3 and 4 (see Appendix) 

show diagnostic tests for models (1) and (8). The 

results of the portmanteau test on the residuals of 

the CVAR and BEKK models are given in the form 

of histograms for the p-values. As regards the 

presence of ARCH effects in the residuals of the 

CVAR model (Figure 2), the null hypothesis of no 

presence of a heteroskedastic component in the 

CVAR model estimated, at a confidence level of 
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95%, cannot be ruled out for 79% of the shares 

considered. The results of the Hosking test carried out 

in order to ascertain the presence of ARCH effects in 

the residuals of the BEKK model (Figure 3), lead to 

the conclusion that the hypothesis of the presence of a 

heteroskedastic component in the model is rejected in 

76% of cases. In other words, it can be concluded that 

the combination of the CVAR and BEKK models 

captures the information regarding the heteroskedastic 

component to a satisfactory degree. 

Figure 4 shows the results of the portmanteau test 

carried out in order to ascertain the presence of 

autocorrelation of residuals in the BEKK model. 

They suggest that the null hypothesis of no 

correlation in the BEKK residuals cannot be ruled 

out for 90% of the shares considered and that the 

maximum lag considered is sufficient. 

An OLS-based CUSUM test for stability of the 

market index was also carried out, and the results 

suggest that the hypothesis of stability of the series 

over the period considered is acceptable. 

The BEKK estimate of volatility for each share is 

between 0.001 and 0.01 for 93% of the series and 

never above 0.031. Hence it can be concluded that 

for most of the series considered, the estimated 

value of the share does not differ from its real value, 

at a confidence level of 95%, by more than 0.2. In 

actual fact, the value at risk calculation put forward 

by J.P. Morgan (Longerstaey et al., 1995; Duffie et 

al., 1997) could be used in order to include the 

information deriving from the presence of 

correlation between the series considered and hence 

to assess the overall risk rather than the risk of the 

individual shares. 

Further confirmation of the adequacy of the CVAR-

BEKK model with respect to the series observed was 

sought before selecting the shares to be included in the 

portfolio. Specifically, the confidence interval, at the 

level of significance of 95%, contains the actual 

value T + 1 in 94% of the series. 

The CVAR-BEKK model can therefore be 

considered reliable for most of the series for the 

purpose of prediction. The next step after 

verification of the suitability of the model was the 

prediction of the prices of the shares as well as their 

intrinsic values. 

Figure 5 shows the values predicted on the basis of 

model (7) together with the actual values and the 

estimated confidence interval for each time series 

considered. 

Figure 6 presents the estimates of the elements of 

the volatility matrix and shows that the risk is 

mostly due to the variances of the shares, to which the 

highest peaks correspond. It is evident, however, that 

the values of variance and covariance are comparable 

for some subsets of shares. This suggests that it 

could prove useful, in order to reduce computational 

complexity, to take covariance into consideration 

only for specific subgroups of shares and variance 

alone for the others. It therefore becomes necessary 

to develop a criterion, based for example on the 

Granger principle of causality or on analysis of 

cross-correlation, in order to identify the groups of 

shares to be addressed in a different way. 

On the basis of potential, expressed as the difference 

between share price and intrinsic value, the ten 

shares with the highest potential returns were then 

selected. 

The criterion of partial ranking was used. It involves 

arranging the values of potential of all the shares 

considered in decreasing order for every industrial 

sector (Goodman and Peavy III, 1983) and selecting 

the first share in each. The use of the partial 

criterion is connected with the relationship between 

P/E and share performance manifested most 

strongly in each industrial sector. As Goodman and 

Peavy III write, ‘firms in the same industry tend to 

cluster in the same relative P/E ranking, detected 

return differences between P/E groups may be 

attributable to industry performances rather than 

P/E level. This bias is eliminated by using P/E 

relative to its industry’. 

Figure 7 shows the efficient frontiers obtained by 

solving the optimization problem (12) for variation 

of the expected return Rp,T+1 and the dimension n of 

the portfolio (n = 10, 11,…, nmax), where nmax = 25 is 

the maximum number of shares with positive 

forecasted returns. 

Overall the portfolio risk tends to decrease as n 

increases. The optimal risk from a risk-averse 

standpoint (i.e. the least of all those calculated) 

corresponds to n = 25; this is indicated with the 

letter X appearing furthest to the left in Figure 6. 

This portfolio has a monthly average return of 

0.00993, a monthly standard deviation of 0.0630, 

and a Sharpe index of 0.15771. We therefore select 

the portfolio made up of n = 25 shares with the 

optimal allocations shown in Figure 8. 

Conclusions 

The selection of a share portfolio has historically 

constituted a complex problem that has no single 

solution but depends both on market conditions and on 

the information available to investors. In other words, 

the choice of shares to invest in must be based on 

objective criteria making it possible to assess risk 

and return without ignoring investors’ opinions. To 

this end, the paper suggests the use of a model for 

the analysis of multiple historical series with a view 
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to the prediction of share return and associated risk 

but also taking the indications of the market into 

account at the same time in the specification of the 

model itself. Variables obtained as functions of P/E 

and EPS have thus been used together with the 

market index as regressors of the combined model 

(1) and (8). The innovative choices in the 

construction of a portfolio selection model put 

forward here regard two distinct aspects. The first 

multiple historical series (Campbell, 2003) to one of 

the CVAR (p) type, which makes it possible to take 

into consideration any cointegration of the series 

considered and therefore constitutes an 

improvement on the inclusion of the information 

available for estimation purposes. The subsequent 

use of a combination of CVAR and BEKK models, 

which extends the results of Bollerslev, Engle and 

Wooldrige (1988), makes it possible to consider also 

the temporally variable correlation between the 

volatility of the series and the volatility of the 

market index within the estimation procedure. The 

second aspect concerns the choice of the criterion 

for the selection of shares, which is addressed here 

by seeking to insert a typical financial concept such 

as intrinsic value into the primarily statistical 

context of the prediction of multiple historical 

series. An intrinsic value estimated by means of the 

combined CVAR-BEKK model is used to obtain a 

potential value serving as a basis to rank the 

different shares and then select the top ten. The 

method put forward was applied to return time 

series of 150 shares with highest capitalization 

quoted on the Italian stock exchange and led to the 

selection of 10 shares constituting a portfolio with 

an average monthly return of 0.00993 and a risk of 

0.0630. Comparison of the results of the CVAR-

BEKK model proposed here and those obtained by 

means of VAR (1) and DVEC models, established 

in the literature, was carried out on the basis of the 

values of their log-likelihood. In other words, since 

one model could produce a higher but less reliable 

value of return than another, it was decided to assess 

the models performance in terms of correspondence 

to the series observed. The log-likelihood of the 

CVAR-BEKK model always proves greater than 

that of the other models, thus indicating more 

accurate representation of the series observed and 

hence better predictions. A further element of 

innovation of this work regards the method of 

volatility matrix estimation. In particular, an 

individual element on the diagonal of the volatility 

matrix is estimated by applying the model to the 

series of log returns both of the share i to which it 

refers and of the market index. An extra-diagonal 

element is instead estimated by using in the model 

the covariances between the series of log returns of 

the two shares i and j to which the element of the 

volatility matrix corresponds. This procedure 

eliminates the typical computation problem of 

BEKK models, namely failure to converge on a 

solution if there are more than five series (Ding and 

Engle, 1994). As the number of shares considered in 

order to define a portfolio is generally higher than 

five, this problem would appear somewhat 

important. As stated in Francq and Zakoian (2010), 

‘... the specification should be parsimonious 

enough to enable feasible estimation. However the 

model should not be too simple to be able to capture 

the, possibly sophisticated, dynamics in the 

covariance structure’.  

Hence the need to harness all the potential of the 

BEKK model also in the case of a large number of 

shares and the proposal of a BEKK model estimated 

element by element for each of the elements of the 

volatility matrix. 

Moreover we find a decrease in the overall risk as 

the number n of shares in the portfolio increases as 

expected (Nyholm, 2008). Finally, a further 

development could regard the study of value at risk, 

understood as assessment of the greatest loss possible, 

as well as identification of possible structural breaks of 

the individual series of share returns with a view to 

making the model more adaptable. 
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Fig. 1. Optimal lag 
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Fig. 2. ARCH effects test p-values (pAR) for CVAR residuals 

 

Fig. 3. ARCH effects test p-values (pHq) for BEKK residuals 

 

Fig. 4. No correlation test p-values (pH) for BEKK residuals 
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Fig. 5. Estimated confidence interval 95% and forecast, actual values 

 

Fig. 6. Estimates of the elements of the volatility matrix (n = 25) 
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Fig. 7. Efficient simulated portfolio frontiers (upper curves’ part) 

 

Fig. 8. Optimal portfolio allocation (n = 25) 
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